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Abstract

Recent advances in data-driven approaches in AI planning de-
mand more and more planning tasks. The supply, however,
is somewhat limited. Past International Planning Competi-
tions (IPCs) have introduced the de-facto standard bench-
marks with the domains written by domain experts. The
few existing methods for sampling random planning tasks
severely limit the resulting problem structure. In this work
we show a method for generating planning tasks of any re-
quested causal graph structure, alleviating the shortage in
existing planning benchmarks. We present an algorithm for
constructing random SAS+ planning tasks given an arbitrary
causal graph and offer random task generators for the well-
explored causal graph structures in the planning literature.
We further allow to generate a planning task equivalent in
causal structure to an input SAS+ planning task. We generate
two benchmark sets: 26 collections for select well-explored
causal graph structures and 42 collections for existing IPC
domains. We evaluate both benchmark sets with the state-of-
the-art optimal planners, showing the adequacy for adopting
them as benchmarks in cost-optimal classical planning. The
benchmark sets and the task generator code are publicly avail-
able at https://github.com/IBM/fdr-generator.

Introduction
Since the first encoded planning tasks in STRIPS (Fikes and
Nilsson 1971), data has been the cornerstone and one of the
main drivers of research in planning. The International Plan-
ning Competitions (IPC) are the primary source of bench-
marks with slightly over 70 domains since the first IPC in
1998 (McDermott 2000). While most of the existing do-
mains are hand-crafted, some correspond to machine trans-
lation from a different problem (e.g., Palacios and Geffner
2009; Bonet, Palacios, and Geffner 2009; Grastien and Scala
2018; Sohrabi et al. 2018).

A major focus in classical planning over the last two
decades has been on heuristic search, with automatically
obtained heuristics for planning tasks. These heuristics, ei-
ther explicitly or implicitly, exploit the task structure in their
computation. In most cases that task structure is the causal
structure. A few examples include the causal graph heuristic
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(Helmert 2004) and the structural pattern heuristics (Katz
and Domshlak 2010; Katz and Keyder 2012). The former
ignores some of the causal graph edges to make it acyclic,
while the latter abstracts the planning task to have particular
causal graph structures that, together with some additional
restrictions, make cost-optimal planning tractable. Other
heuristic functions, such as pattern databases (Edelkamp
2001) exploit the causal information in e.g., pattern se-
lection (Haslum et al. 2007). Merge-and-shrink heuristics
(Helmert, Haslum, and Hoffmann 2007) use the causal graph
for guiding the merge process. Most existing heuristics that
work on the multi-valued representation exploit the causal
information in one way or another. Further, starting with
the seminal work of Bäckström and Nebel (1995), the re-
search on the complexity of planning tasks had a major fo-
cus on the characterization of planning fragments by their
causal graph structure (Domshlak and Dinitz 2001; Domsh-
lak and Brafman 2002; Katz and Domshlak 2007, 2008a,b,
2010; Giménez and Jonsson 2008, 2009; Katz and Keyder
2012; Bäckström and Jonsson 2013; Aghighi, Jonsson, and
Ståhlberg 2015; Bäckström, Jonsson, and Ordyniak 2019),
as well as some local structural characteristics, such as k-
dependence (Katz and Domshlak 2007, 2008a; Giménez and
Jonsson 2012), classifying these fragments into a variety of
complexity classes. For these two reasons, various planners’
performance heavily relies on structural characteristics of
the input planning task.

In this work, we aim to enable generating planning tasks
of the requested structure. Here, we focus on tasks char-
acterized by their causal graph structure. Namely, we pro-
pose a way of generating a SAS+ task whose causal graph
matches any graph over the multi-valued variables provided
as an input. This approach automatically generates a diverse
collection of planning tasks, as large as needed for various
purposes such as learning a good planner selection strat-
egy (Sievers et al. 2019), or offering an additional source
of benchmarks for empirical evaluation. We empirically val-
idate that our generated tasks are sufficiently challenging
for the existing state-of-the-art classical cost-optimal plan-
ners and that their relative performance on these domains
is somewhat different from the one on auto-generated IPC
instances (Torralba, Seipp, and Sievers 2021).
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Figure 1: (a) A transportation planning example task, (b) its causal graph, and (c) the fact layers of the relaxed planning graph.

The rest of the paper is structured as follows. We first pro-
vide the necessary background and notation. Then, we de-
scribe the proposed planning task construction method and
discuss some of the causal graph structures used. The ex-
perimental evaluation section describes the method used to
generate a small set of instances challenging for state-of-the-
art planners, as well as presents an evaluation of the gener-
ated collection with state-of-the-art cost-optimal planners.
We conclude with the related work and discussion sections.

Preliminaries
A SAS+ planning task (Bäckström and Nebel 1995) is given
by a tuple 〈V, A, s0, s∗〉, where V is a finite set of state vari-
ables and A is a finite set of actions. Each state variable
v ∈V has a finite domain dom(v). A fact is a pair 〈v, ϑ〉 of
variable v ∈ V and its value ϑ ∈ dom(v). By Fv we denote
the set {〈v, ϑ〉 | ϑ ∈ dom(v)} of facts for the variable v,
and the set of all facts is denoted by F :=

⋃
v∈V Fv . A (par-

tial) assignment to the variables V is called a (partial) state.
We view a partial state p as a set of facts with 〈v, ϑ〉 ∈ p if
and only if p[v] = ϑ. For a partial state p, V(p) ⊆ V de-
notes the subset of state variables instantiated by p. A partial
state p is consistent with state s if p ⊆ s. We denote the
set of states of a planning task by S. s0 is the initial state,
and the partial state s∗ is the goal. Each action a is a pair

〈pre(a), eff (a)〉 of partial states called preconditions and ef-
fects. By prv(a) we denote the part of the preconditions that
corresponds to variables that do not participate in the ac-
tion’s effects, prv(a) = {〈v, ϑ〉 ∈ pre(a) | v 6∈ V(eff (a))},
also called prevail conditions. An action cost is a mapping
C : A → R0+. For simplicity, we assume that the precon-
ditions are defined whenever the effects are defined, that is
V(eff (a)) ⊆ V(pre(a)). An action a is applicable in a state
s ∈ S if and only if pre(a) ⊆ s. Applying a changes the
value of v ∈ V(eff (a)) to eff (a)[v]. The resulting state is
denoted by sJaK. An action sequence π = 〈a1, . . . , ak〉 is
applicable in s if there exist states s0, · · · , sk such that (i)
s0 = s, and (ii) for each 1 ≤ i ≤ k, ai is applicable in si−1

and si = si−1JaiK. We denote the state sk by sJπK. π is a
plan iff π is applicable in s0 and s∗ ⊆ s0JπK. We denote by
P(Π) (or just P when the task is clear from the context) the
set of all plans of Π. The cost of a plan π, denoted by C(π)
is the summed cost of the actions in the plan.

To illustrate the definitions we use a transportation plan-
ning task example by Helmert (2006), depicted in Figure 1.
Example The task is to deliver parcel p1 from C to
G and parcel p2 from F to E by the means of cars
c1, c2, and c3, as well as truck t. In SAS+, it has
state variables V = {c1, c2, c3, t, p1, p2} with domains
dom(c1) = dom(c2) = {A,B,C,D}, dom(c3) =



{E,F,G}, dom(t) = {D,E}, and dom(p1) = dom(p2) =
{A,B,C,D,E, F,G, c1, c2, c3, t}. Actions are drive-c-x-
y for cars on thin edges (inner city roads) and drive-t-x-
y for the truck on the thick edges (highways); load-p-v-x
and unload-p-v-x for all parcels, vehicles, and locations.
The action drive-c1-A-D, for example, has preconditions
{c1 = A} and effects {c1 = D} and the action load-
p1-c1-C has preconditions {p1 = C, c1 = C} and effects
{p1 = c1}.

Causal Graph
A central role in what follows is played by causal graphs
(Helmert 2004). The causal graph CGΠ of a task Π is a di-
graph with vertices V . An arc (v, v′) is in CGΠ iff v 6= v′ and
there exists an action a ∈ A such that (v, v′) ∈ [V(eff (a))∪
V(pre(a))] × V(eff (a)). The causal graph of the example
task is shown in Figure 1 (b). The move actions do not con-
tribute any edges, as these actions are preconditioned on the
same variable they affect. All edges are contributed by the
load and unload actions. Specifically, the action load-p1-c1-
C contributes the edge from c1 to p1. For an action a, by Ea

we denote the set of all such arcs, and by EA′ we denote the
union of all sets of arcs Ea for a ∈ A′.

Relaxed Planning Graph
Another structure typically used in planning for comput-
ing relaxation-based heuristics is relaxed planning graph
(Hoffmann and Nebel 2001), a layered graph of facts and
actions, describing action application in the planning task,
under value accumulating semantics, i.e., delete-relaxation
in the STRIPS formalism. The layers are added until a fix-
point is reached, i.e., until no new fact can be achieved.
The first fact layer F0 thus corresponds to the facts from
the initial state, and the last layer is also a fact layer, and
it is equal to the preceding fact layer. Each action layer Ai

consists of all actions from A that are applicable in Fi, i.e.,
Ai = {a ∈ A | pre(a) ⊆ Fi}. The next fact layer Fi+1 is
then constructed by adding to Fi all facts achieved by the ac-
tions in Ai, namely Fi+1 = Fi ∪

⋃
a∈Ai

eff (a). Figure 1 (c)
shows the fact layers for our example task, without repeating
the last equivalent layer. As layers grow monotonically, we
only show the newly added facts in each layer. For example,
F1 = F0∪{c1 = D, c2 = D, c3 = E, c3 = F, t = D}, with
c1 = D being the effect of the action drive-c1-A-D, whose
precondition is in F0.

Translating STRIPS to SAS+

Finally, the SAS+ representation is often obtained by trans-
lation from the STRIPS representation (Helmert 2006). The
multi-valued SAS+ variables then correspond to invari-
ant groups of pairwise mutually exclusive facts (mutexes),
where exactly one such fact is true in any state reachable
from the initial state. Each such invariant group over STRIPS
facts corresponds to a set of facts at most one of which can
be true in any reachable state. If there exist such states where
no facts are true, then an additional value is added, repre-
senting that none of the facts in the invariant group is true.

In our example task, the STRIPS representation includes mu-
tually exclusive facts that represent various locations of ve-
hicles, as well as locations/positions of parcels. Exactly one
of these facts can be true in any reachable state.

Construction
The aim of this work is to generate planning tasks of a spe-
cific causal graph structure. Therefore, our algorithm will
receive a graph G = (V, E) as its input and produce a SAS+

planning task Π with CGΠ = G.

Planning Task Construction
Given a graph G = (V, E) and a number of facts n ≥ 2|V|,
we construct the SAS+ planning task Π = 〈V, A, s0, s∗〉
with the causal graph G as follows. First, we choose the
domain size dv ≥ 2 for each multi-valued variable v ∈
V and assume without loss of generality the values to be
dom(v) = {0, . . . , dv − 1}. The variables represent sets of
mutexes, each corresponds to one of the two types: exactly
one or at most one of the values is true in all reachable states.
We randomly decide which variables belong to which cate-
gory. For the latter case, the last domain value corresponds
to the case when none of the other facts are true. Next, with-
out loss of generality, we assume s0[v] = 0 for all v ∈ V .
Then, we construct the actions, in layers, while in parallel
constructing the relaxed planning graph. Finally, the goal is
chosen from the last fact layer of the relaxed planning graph,
making sure that at most one fact is chosen per variable. We
randomly decide whether at least one of the chosen facts is
unique to the last fact layer. In what follows, we describe
how actions are constructed. Starting with the initial state as
the first fact layer F0, we create actions for an action layer
Li by

(I) selecting a subset of facts from the fact layer Fi, en-
suring at most one fact is selected per variable,

(II) partitioning the selected set of facts into prevail con-
dition and non-prevail precondition, and

(III) choosing for all1 the variables of the precondition
facts a different value as its effect.

The constructed action a is checked against the graph G,
ensuring that it contributes only edges that exist in G. If not,
a is discarded. If a does not contribute any new edges and
does not achieve new facts, we randomly decide whether to
keep it.

The generic approach to action construction described
above can be adapted to enforce particular properties. We
discuss three such cases in detail.

(A) Enforce the action to achieve at least one new fact: en-
sure in steps (I) and (II) that the precondition includes
facts for some variables v ∈ V that are not fully cov-
ered by the fact layer Fi (that is Fv \ Fi 6= ∅), and in
step (III) to choose one of these facts Fv \Fi. Note that

1While SAS+ representation does not require to specify the pre-
condition when the effect is specified, in order to ensure maintain-
ing variables as mutexes of facts, we restrict ourselves here to al-
ways specifying the precondition in such cases.



this can be done without covering any new edges to the
causal graph, if a single fact is chosen in step (I).

(B) Enforce the preconditions to include atoms from Fi \
Fi−1, enforced in step (I).

(C) Enforce covering another edge 〈v, v′〉 of G: ensure that
〈v, ϑ〉 and 〈v′, ϑ′〉 are chosen in step (I), and in step
(II) at most one of these facts is chosen for the prevail
condition.

We randomly and independently decide whether to enforce
the options (A)-(C) and whether to cover additional edges
of the causal graph. Note that not all combinations are al-
ways possible. In such cases, an action is not constructed
in that iteration. Each layer is constructed until a sufficient
number of new facts Fi+1 \ Fi is added. The construction
is stopped when all facts were achieved and all edges from
G are reflected in the causal graph of the constructed plan-
ning task. The latter is enforced in the last layer. The goal is
then randomly chosen from the last layer according to step
(I), randomly deciding whether to ensure that at least one of
the facts is not achieved before the last layer, analogously
to how a precondition of an action is chosen when enforc-
ing the option (B). Algorithm 1 describes the construction of
a planning task from the given graph G, where the function
CREATEACTION creates a single action, randomly choosing
among the options described above. All random choices are
made uniformly, with the decisions being made based on al-
gorithm parameters. Given that, we can now show that the
algorithm successfully terminates in polynomial time.

Theorem 1 Given G and n, Algorithm 1 terminates in time
polynomial in |G| and n and returns a planning task with
the causal graph G.

Proof: The proof follows from the fact that in line 13 of Al-
gorithm 1, an action that covers a previously not covered
edge in E is eventually created, after a polynomial num-
ber of invocations. This is due to the property (C) being en-
forced with probability pa. Thus, it must eventually hold that
Ea ⊆ E andEa\EA∪A′ 6= ∅ and the action will be added to
the actions layer. Enforcing the property (A) will allow cre-
ating actions that add new atoms to the fact layer. Therefore,
CREATELAYER terminates and returns a layer with m new
facts or, if m = 0, with A′ such that EA∪A′ = E. As there
are only a constant number of options, a new fact is achieved
or a new causal graph edge is covered in time O(1) and
therefore CREATELAYER terminates in time O(m + |E|).
Since at least one new fact is added in each layer, Algorithm
1 terminates in time O(n|E|). Since the while loop in line 4
terminates only whenE\EA = ∅ and actions a are added to
A only if Ea ⊆ E, when the algorithm terminates, we must
have EA = E. Therefore, the causal graph of the returned
task Π must be exactly the graph G. �

A feature of our algorithm is that it produces instances
that are guaranteed to be delete-relaxed solvable, but not
necessarily solvable. But what is the space of all delete-
relaxed solvable SAS+ planning tasks that can be produced
by our algorithm? As it turns out, any such task can in prin-
ciple be produced. To see that, observe that, except for the

Algorithm 1 Planning task construction.
Input: Graph G = (V, E), number of facts n ≥ 2|V|,

number of goals ng ≤ |V|,
maximal number of facts per layer nm
maximal number of prevail conditions np,
maximal number of effects ne,
probability of goal achieved only in the last layer pg ,
probability of enforcing a new edge pa

Output: A planning task Π with the causal graph G

1: Partition n into |V| values dv≥2 s. t.
∑

v∈V dv = n
2: Fv ← {〈v, ϑ〉 | 0 ≤ ϑ < dv} for all v ∈ V
3: s0[v]← 0 for all v ∈ V , k ← 0, A← ∅, Fk ← s0

4: while |Fk| < n or E \ EA 6= ∅ do
5: mk+1 ← number of new facts (≤ nm) for layer k+1
6: Fk+1, Ak ← CREATELAYER(mk+1, Fk, A)
7: A← A ∪Ak, k ← k + 1

8: Select s∗⊆Fk s. t. ∀v ∈ V, |s∗∩Fv|≤1 and |s∗|=ng
and (s∗ \ Fk−1 6= ∅ or Rnd(pg))

9: return Π = 〈V, A, s0, s∗〉

10: function CREATELAYER(m, F , A)
11: A′ ← ∅, F ′ ← F
12: while |F ′\F |<m or (m=0 and E\EA∪A′ 6=∅) do
13: a← CREATEACTION( )
14: ifEa⊆E and (Ea\EA∪A′ 6=∅ or Rnd(pa)) then
15: A′ ← A′ ∪ {a}, F ′ ← F ′ ∪ eff (a)

16: return F ′, A′

structure-based, any restrictions on action preconditions and
effects, as well as the goal are optional. Specifically, the
choice of goal to include facts exclusive to the last layer was
merely aimed at increasing plan length.
Theorem 2 Given a delete-relaxed solvable SAS+ planning
task Π, the probability of Algorithm 1 producing a planning
task that is equivalent to Π is greater than 0.
Proof: The proof is straightforward from the construction.
First, all the parameters of the algorithm can be taken from
Π. This includes the causal graph, the number of variables
and their domains, etc. Let F0, . . . , Fn and A0, . . . , An−1

be the fact and action layers of the relaxed planning graph
of Π. For simplicity, let us assume that the domain values of
the variables in Π are 0, . . . , |dom(v)| − 1, consistent with
the order of the fact layers F0, . . . , Fn. First, note that the
first fact layer created by Algorithm 1 is F0. Starting with
the first layer, if the algorithm has produced the fact layers
F0, . . . , Fi and action layers A0, . . . , Ai−1, we show that it
can produce the action layer Ai. Each action o ∈ Ai has a
non-zero probability of being constructed by our algorithm
for creating the first layer. This is due to the fact that the
precondition is chosen from Fi and the condition (C) can be
enforced. For effects, step (III) does not impose any restric-
tions. Therefore, there is a non-zero probability of producing
exactly the actions in Ai in any order and the algorithm can
produce exactly the next fact layer Fi+1. �
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Figure 2: Graph structures: (a) fork, (b) inverted fork, (c) polytree, (d) directed bipartite graph, (e) chain, and (f) star.

Causal Graph Structures
The algorithm described above requires a graph to be pro-
vided as an input. As our construction works with any graph,
we have implemented generation procedures for a variety
of structures. We focus on well-defined and well-explored
causal graph structures from the planning literature, rather
than structures that occur in IPC domains. In the latter, exist-
ing translators mostly produce SAS+ tasks with causal struc-
ture that is not easily characterized. However, the translation
process can be guided by enforcing particular restrictions to
obtain SAS+ tasks with certain properties (Fišer et al. 2021).
In principle, it should be possible to impose constraints on
the causal graph structure to produce SAS+ tasks with causal
graphs from particular families, e.g., DAG.

We focus on the following graphs: chain, directed chain,
fork, inverted fork, star, bipartite graph, directed bipartite
graph, tree, polytree, directed acyclic graph, and random
graph. For some of these structures, namely directed chain,
fork, inverted fork, and complete graph the graphs are fully
defined by the number of nodes (modulo automorphisms).
In other cases, we introduce randomness into the graph con-
struction. In what follows, we describe how we handle these
cases.

Directed Bipartite Graph: A full directed bipartite
graph is constructed by first randomly partitioning the
nodes into left and right and then introducing an edge
from each node on the left to each node on the right.
Bipartite Graph: A full undirected bipartite graph is
constructed by first randomly partitioning the nodes into
left and right and then introducing an edge from each
node on the left to each node on the right, and vice versa.
Directed Chain: A directed chain of n nodes v1, . . . , vn
is created by adding the edges (vi, vi+1) for each 1 ≤
i < n.
Chain: An undirected chain of n nodes v1, . . . , vn is cre-
ated as follows. For each 1 ≤ i < n, we randomly decide
whether to add an edge (vi, vi+1), with probability p. If
no such edge is added, we add the edge (vi+1, vi) and if
the edge (vi, vi+1) was added, we decide with probabil-
ity p whether to add the edge (vi+1, vi).
Tree: A directed tree of n nodes v1, . . . , vn is constructed
by choosing for each node vi a parent randomly out of the
nodes v1, . . . , vi−1.
Polytree: For a polytree, we start with a tree constructed
as above, and then for each edge switch its direction with

probability p.
Directed Acyclic Graph: A directed acyclic graph of
n nodes v1, . . . , vn is constructed by choosing for each
node vi at least one parent randomly out of the nodes
v1, . . . , vi−1. We do that by going over all the preceding
nodes and deciding with probability p whether to add an
edge from the preceding node to the current node. If no
edges were added, we repeat until at least one edge is
added for each node (except the first one).
Random Graph: For each pair of nodes vi and vj we
randomly decide whether to add a directed edge from vi
to vj .
Fork: A fork is a directed tree with all non-root nodes
being leafs, with their parent being the root node. A fork
over nodes v1, . . . , vn is created by adding the edges
(v1, vi) for each 1 < i ≤ n.
Inverted Fork: An inverted fork is a directed polytree
with one leaf node and all non-leaf nodes being roots,
with their only child node being the leaf node. An in-
verted fork over nodes v1, . . . , vn is created by adding
the edges (vi, v1) for each 1 < i ≤ n.
Star: A star structure has one central node with all other
nodes connected with the central node only. A star over
nodes v1, . . . , vn is created as follows. For each 1 < i ≤
n, we randomly decide whether to add an edge (v1, vi),
with probability p. If no such edge is added, we add the
edge (vi, v1) and if the edge (v1, vi) was added, we de-
cide with probability p whether to add the edge (vi, v1).

Figure 2 exemplifies selected graph structures. Probably
the most explored causal graph structure in terms of com-
plexity analysis is the polytree (Domshlak and Dinitz 2001;
Domshlak and Brafman 2002; Katz and Domshlak 2007,
2008a; Giménez and Jonsson 2008; Bäckström and Jonsson
2013; Aghighi, Jonsson, and Ståhlberg 2015; Bäckström,
Jonsson, and Ordyniak 2019). Other explored structures in-
clude chains (Domshlak and Dinitz 2001; Giménez and Jon-
sson 2008, 2009), DAGs and directed-path singly connected
graphs (Domshlak and Dinitz 2001; Domshlak and Brafman
2002; Katz and Domshlak 2007, 2008a,b, 2010; Bäckström
and Jonsson 2013), as well as (inverted) forks and (inverted)
trees (Domshlak and Dinitz 2001; Domshlak and Brafman
2002; Katz and Domshlak 2007, 2008a,b, 2010; Katz and
Keyder 2012). Note that in all these cases, planning remain
hard unless additional, often extreme restrictions are im-
posed (Katz and Domshlak 2007, 2008a,b, 2010).



While our aim in this work is to provide a well-structured
benchmarks set, our algorithm is in no way restricted to pro-
duce planning tasks based on these particular structures. In
fact, even existing SAS+ planning tasks can be used to seed
our algorithm. Such tasks can provide all the necessary in-
put: the causal graph and the variables, the number of facts,
the number of goals, as well as the maximal number of pre-
vail conditions or effects.

Experimental Evaluation
Our experimental evaluation consists of two parts. The first
one focuses on the generation of a new benchmark set.
The second one evaluates the generated benchmark set with
state-of-the-art planners to ensure that the set is both suffi-
ciently challenging and within the reach of the current state
of the art in classical planning. Here, we focus on cost-
optimal planning, creating a benchmark set suitable for cur-
rent state-of-the-art cost-optimal planners.

Benchmark Set for Causal Graph Structures
We start by constructing a new benchmark set from interest-
ing graph families as described in the previous section. The
causal structures star, chain, directed acyclic graph, ran-
dom, and poly-tree, have the edge probability as a parameter
for the graph generator. We use the values 0.1, 0.25, 0.5, and
0.75 as edge probability for the causal structures. For the
six causal structures directed bipartite graph, bidirectional
bipartite graph, directed chain, fork, inverted fork, and tree,
edge probability does not play a role in graph creation. In to-
tal, that gives us 26 planning domains. For each of these 26
domains, we have generated a compact and well-balanced
set of 30 instances with the help of Autoscale (Torralba,
Seipp, and Sievers 2021). Autoscale uses a collection of
cost-optimal planners internally to estimate the ”hardness”
of candidate instances. This hardness is measured in terms
of total time until the candidate instance was either solved
by a planner or proved to be unsolvable. It is straightforward
therefore to create benchmark sets more suitable for current
satisficing planners instead, by replacing cost-optimal plan-
ners in Autoscale with satisficing ones. In what follows, we
refer to this benchmark set as the structured benchmark set.

Autoscale takes as input a problem generator and a range
of values of its input parameters and generates a set of
tasks, aiming at producing tasks whose difficulty scales up
smoothly. Here, we varied the number of variables and the
average domain size, stabilizing the rest. These values, as
well as the distribution of the instance generation parame-
ters can be found in the supplementary material in the code
repository. To prevent producing a large number of instances
that are easily detected to be unsolvable, we use the h2

mutex-based preprocessor (Alcázar and Torralba 2015) to
quickly test for unsolvability and regenerate an instance with
a different random seed.

Evaluating Structured Benchmark Set
To evaluate the performance of the state-of-the-art cost-
optimal classical planners on the generated benchmark set,
we have selected the top-performing non-portfolio optimal

Collection Comp PDBs Scorp SYMBA∗ LM-cut
bipartite 5 5 6 7 6
bd-bipartite 21 21 23 21 23
chain 0.1 19 3 23 1 7
chain 0.25 22 8 24 4 7
chain 0.5 26 16 28 8 13
chain 0.75 26 13 27 3 1
dag 0.1 12 5 18 3 13
dag 0.25 4 3 7 0 11
dag 0.5 10 10 12 2 17
dag 0.75 7 6 12 1 12
d-chain 29 29 29 29 26
fork 2 5 14 1 6
inverted fork 9 7 11 11 16
polytree 0.1 20 14 29 9 13
polytree 0.25 10 8 22 4 10
polytree 0.5 12 9 20 3 13
polytree 0.75 12 8 20 3 17
random 0.1 21 21 28 12 28
random 0.25 6 10 19 6 23
random 0.5 26 25 16 25 29
random 0.75 30 30 29 30 30
star 0.1 6 5 7 0 11
star 0.25 5 6 6 0 12
star 0.5 10 9 11 1 12
star 0.75 6 6 7 0 10
tree 15 7 24 5 15
Sum (780) 371 289 472 189 381

Table 1: Coverage of state-of-the-art planning systems:
Complementary (Comp), planning-PDBs (PDBs), Scorpion
(Scorp), SYMBA∗, and A∗ with the LM-cut heuristic on the
structured benchmark set.

planners from the most recent IPC 2018: Complementary
(Franco et al. 2018), Planning-PDBs (Moraru et al. 2018),
and Scorpion (Seipp 2018). We excluded the portfolio plan-
ner Delfi (Sievers et al. 2019), and included instead its
top performing components: the symbolic planner SYMBA∗

(Torralba et al. 2014) and explicit heuristic search with the
LM-cut heuristic (Helmert and Domshlak 2009). The ex-
periments were performed on Intel(R) Xeon(R) CPU E5-
2683 v4 @ 2.10GHz machines, with a timeout of 30 min-
utes and memory limit of 3.5GB per run. Table 1 shows per-
collection aggregated coverage comparison of the selected
planners. Each task in a collection contributes a value of 1
to the coverage if it was either solved by the planner or the
planner was able to prove the task to be unsolvable. Observe
that a few domains such as directed chain and random seem
to be easy for these planners, with the coverage reaching or
coming close to 30. The rest, however, are quite challenging
for these planners. Out of the total 780 tasks, 548 are solved
by at least one planner, leaving 232 tasks not being solved
by any of these state of the art planners.

Benchmark Set from IPC Instances
Finally, as mentioned above, our approach allows to gen-
erate a planning task that mimics the structure of an input



Collection Comp PDBs Scorp SYMBA∗ LM-cut
airport (30) 17 17 30 3 28
blocksworld (30) 18 18 17 11 15
childsnack (30) 30 30 30 23 30
depots (30) 15 14 13 8 14
driverlog (30) 30 30 28 29 20
elevators (30) 29 28 28 24 23
floortile (30) 9 9 7 8 5
freecell (30) 30 30 30 22 29
gripper (30) 23 23 18 22 15
logistics (30) 29 29 27 26 28
miconic (30) 30 30 28 30 26
mprime (30) 24 24 24 19 21
nomystery (30) 28 30 24 25 23
openstacks (30) 12 9 13 3 9
organic-s-sp (30) 13 13 27 3 9
parcprinter (30) 21 20 25 15 18
parking (30) 14 13 14 7 11
pipes-tank (30) 24 23 24 19 25
rovers (30) 30 30 28 30 27
satellite (30) 30 30 17 30 24
snake (30) 26 21 25 2 25
sokoban (30) 21 21 17 15 18
storage (30) 14 14 15 7 14
termes (30) 23 23 22 23 22
tetris (30) 10 11 27 12 15
thoughtful (30) 29 28 29 25 29
tidybot (30) 29 29 30 18 30
tpp (30) 20 11 22 8 10
transport (30) 30 29 28 30 25
visitall (29) 22 22 17 25 11
woodworking (30) 14 10 17 5 12
zenotravel (30) 29 30 29 29 27
Sum other (245) 245 245 245 245 245
Sum (1204) 968 944 975 801 883
Autoscale (1260) 415 420 339 385 241

Table 2: Coverage of state-of-the-art planning systems:
Complementary (Comp), planning-PDBs (PDBs), Scorpion
(Scorp), SYMBA∗, and A∗ with the LM-cut heuristic on the
IPC-based benchmark set.

planning task in SAS+. We use the recently introduced Au-
toscale IPC benchmark set2 (Torralba, Seipp, and Sievers
2021) as the source for the input parameters, generating a
planning task for each task in that set. The choice of the
benchmark set was primarily guided by its better reflection
of what instances are hard for the current state of the art in
classical planning. Here as well we use the h2 mutex-based
preprocessor (Alcázar and Torralba 2015) to test for unsolv-
ability and regenerate the instance using a different random
seed, making up to 1000 attempts. We have created 1204
out of possible 1260 instances in 42 domains. We refer to
this benchmark set as IPC-based. Table 2 shows the per-

2An existing publicly available benchmark generated from IPC
domains using the Autoscale tool.

domain coverage for the same state-of-the-art cost-optimal
planners on these domains. There are 245 instances in 10 do-
mains solved by all planners, not shown in the table. There
is still a significant number of instances not solved by any
planner, however, not surprisingly, not as much as for the
actual Autoscale IPC benchmark set. For comparison, the
last row in Table 2 shows how the selected planners per-
form on the actual Autoscale IPC benchmark set. Looking at
the three benchmark sets, the structural one, the IPC-based
one, and the Autoscale one, the selected planners’ relative
performance differs quite significantly from one to another.
Scorpion, ranking first on both randomly generated ones,
is ranked fourth out of five on Autoscale. Planning-PDBs
is ranked first on Autoscale but ranked fourth and third on
structural and IPC-based benchmark sets, respectively. LM-
cut is ranked second on the structural benchmark set, fourth
on IPC-based, and last on Autoscale. While this is not sur-
prising, as it is well known that the choice of planning do-
mains heavily influences planner rankings, it strengthens the
motivation of additional benchmarks for classical planning.
Here as well, 153 out if 1260 tasks are not solved by any of
these planners.

Generation of Solvable and Unsolvable Instances
Both of our generated benchmark sets contain a mixture of
solvable and unsolvable planning tasks. We see this as a fea-
ture of our method rather than a limitation. Recall that the
coverage indicates whether a planner was able to either solve
the task or prove it to be unsolvable. The latter is especially
challenging if there is no a priori knowledge whether the
task is actually unsolvable, which is achievable only in such
mixed collections of solvable and unsolvable tasks.

Translating SAS+ to PDDL
While, to the best of our knowledge, most if not all mod-
ern competitive classical planners use SAS+ representation
internally (Helmert 2006; Ramirez, Lipovetzky, and Muise
2015), for the sake of completeness we also provide our
benchmark set in PDDL. To create a PDDL task, the SAS+

task is translated to the STRIPS fragment of PDDL, ignor-
ing the facts that represent the at-most-one case. PDDL
preconditions are taken from SAS+ preconditions, add ef-
fects are taken from SAS+ effects, and delete effects are
taken from non-prevail preconditions. Note that a transla-
tion from STRIPS back to SAS+ is not unique and the causal
graph structure is not necessarily preserved by translating
the PDDL representation to STRIPS and back to SAS+. There-
fore, we keep both the SAS+ representation, as well as the
translated PDDL. That way, planners that use SAS+ represen-
tation can use the provided one, while planners that do not
use SAS+ can still benefit from our tasks, using the PDDL in-
put format. Since such planners do not use SAS+ and there-
fore causal graphs, it is less important for them that the SAS+

structure might not be preserved.

Related Work
The idea of generating domain models as well as specific
planning tasks has been explored in the planning commu-
nity, with a major focus on learning domain models from



traces, for classical planning (e.g., Yang, Wu, and Jiang
2007; Zhuo et al. 2010; Tian, Zhuo, and Kambhampati
2016) and HTN planning (e.g., Hogg, Muñoz-Avila, and
Kuter 2008; Hogg, Kuter, and Muñoz-Avila 2010; Hogg,
Muñoz-Avila, and Kuter 2016). The work often assumes
an existence of a complete model the plan traces are gen-
erated from. Some aspects of these domain models are
then learned or reconstructed from successful plan traces.
Some examples include learning action preconditions (Zhuo
et al. 2009), or refine incomplete action descriptions (Zhuo,
Nguyen, and Kambhampati 2013).

Probably more related to our work is the work on gen-
erating problem instances for CSP/SAT problems (e.g.,
Achlioptas et al. 2000; Xu et al. 2005). There are sev-
eral online tools/services such as the “Tough SAT Project”
or “SATLIB” that generate CNF formulas encoding “dif-
ficult” problems (e.g., Yuen and Bebel 2017; Hoos and
Stützle 2000). Producing hard satisfiable instances has ad-
vanced the research field in SAT/CSP. These instances can
be polynomial-time reduced to STRIPS in theory, but also
in practice (Porco, Machado, and Bonet 2011). The authors
provide a tool to translate multiple NP-complete computa-
tional problem instances (including SAT, CLIQUE, Direct-
edHamiltonianPath, etc.) into an NP-Complete fragment of
STRIPS that they call STRIPS-1. In that fragment, the actions
are either delete-free or can be applied at most once. While
the fragment is somewhat limited, the approach can be used
for creating additional benchmark sets for planning. Unfor-
tunately, the work has not yet received the attention it de-
serves, and the instances or the tools are not currently widely
used. It is worth mentioning that our suggested approach to
generating random PDDL instances is a somewhat different
task than generating random CNF formula, and then trans-
lating to STRIPS. Our focus is on being able to control the
causal structure of the generated problem, which is not pos-
sible with the aforementioned methods.

Highly related is the work on random planning tasks gen-
eration for analyzing phase transition in classical planning
(Bylander 1996; Rintanen 2004). The authors propose a va-
riety of models for sampling the space of STRIPS planning
problem instances, exploring the possibility of phase tran-
sition at some constant ratio of the number of actions to
the number of state variables. These models correspond to
a constrained set of problem instances, restricting the sizes
of preconditions and effects, and reducing the chances of
generating trivially unsolvable tasks. Unfortunately, the pro-
posed methods for generating tasks do not yield tasks of a
desired structure and it is not clear what additional restric-
tions can be imposed in order to obtain such tasks.

Discussion and Future Work
We have presented a method to generate planning tasks of
specific causal graph structure. We also cast these tasks into
a STRIPS fragment of PDDL, allowing using as an input to
any PDDL planner. With the help of AutoScale we generated
a benchmark set of 26 task collections for various causal
graph structures, with 30 tasks in each collection. Based on
a recently proposed Autoscale IPC benchmark set, we gen-
erate a benchmark set mimicking the structure of existing

planning tasks. Our experimental evaluation clearly shows
that the two generated benchmark sets are challenging for
the state-of-the-art in classical optimal planning. In the hope
to facilitate further research and enable better comparison
of planning tools, we make our tool and the benchmark sets
publicly available.

The paper opens up a variety of avenues for future work.
First, we would like to investigate the phase transition in
planning according to structural characterization of plan-
ning tasks. We conjecture that phase transition might ap-
pear at different number of actions to state variables ratios
for different causal graph structures. Additionally, we would
like to explore the usage of generating planning tasks for
the purpose of learning a planner selection strategy. Third,
we would like to explore the possibility of generating lifted
PDDL tasks of a meaningful causal structure. Further, we
have explored so far causal graphs as the main structural
characterization of generated planning tasks. We would like
to explore additional structural restrictions of planning tasks,
such as, e.g., k-dependence (Katz and Domshlak 2008a).
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Hogg, C.; Muñoz-Avila, H.; and Kuter, U. 2016. Learning
Hierarchical Task Models from Input Traces. Computational
Intelligence, 32(1): 3–48.
Hoos, H.; and Stützle, T. 2000. SATLIB: An Online Re-
source for Research on SAT. 283–292.
Katz, M.; and Domshlak, C. 2007. Structural Patterns of
Tractable Sequentially-Optimal Planning. In Proc. ICAPS
2007, 200–207.
Katz, M.; and Domshlak, C. 2008a. New Islands of
Tractability of Cost-Optimal Planning. JAIR, 32: 203–288.
Katz, M.; and Domshlak, C. 2008b. Structural Patterns
Heuristics via Fork Decomposition. In Proc. ICAPS 2008,
182–189.
Katz, M.; and Domshlak, C. 2010. Implicit Abstraction
Heuristics. JAIR, 39: 51–126.

Katz, M.; and Keyder, E. 2012. Structural Patterns Beyond
Forks: Extending the Complexity Boundaries of Classical
Planning. In Proc. AAAI 2012, 1779–1785.
McDermott, D. 2000. The 1998 AI Planning Systems Com-
petition. AI Magazine, 21(2): 35–55.
Moraru, I.; Edelkamp, S.; Martinez, M.; and Franco, S.
2018. Planning-PDBs Planner. In IPC-9 planner abstracts,
69–73.
Palacios, H.; and Geffner, H. 2009. Compiling Uncertainty
Away in Conformant Planning Problems with Bounded
Width. JAIR, 35: 623–675.
Porco, A.; Machado, A.; and Bonet, B. 2011. Automatic
polytime reductions of NP problems into a fragment of
STRIPS. In Proc. ICAPS 2011, 178–185.
Ramirez, M.; Lipovetzky, N.; and Muise, C. 2015.
Lightweight Automated Planning ToolKiT. http://lapkt.org/.
Accessed: 2020-01-01.
Rintanen, J. 2004. Phase Transitions in Classical Planning:
an Experimental Study. In Proc. ICAPS 2004, 101–110.
Seipp, J. 2018. Fast Downward Scorpion. In IPC-9 planner
abstracts, 77–79.
Sievers, S.; Katz, M.; Sohrabi, S.; Samulowitz, H.; and Fer-
ber, P. 2019. Deep Learning for Cost-Optimal Planning:
Task-Dependent Planner Selection. In Proc. AAAI 2019,
7715–7723.
Sohrabi, S.; Riabov, A. V.; Katz, M.; and Udrea, O. 2018. An
AI Planning Solution to Scenario Generation for Enterprise
Risk Management. In Proc. AAAI 2018, 160–167.
Tian, X.; Zhuo, H. H.; and Kambhampati, S. 2016. Dis-
covering Underlying Plans Based on Distributed Represen-
tations of Actions. In Proc. AAMAS 2016, 1135–1143.
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