
Strengthening Canonical Pattern Databases with Structural Symmetries
Silvan Sievers and Martin Wehrle and Malte Helmert

University of Basel, Switzerland
{silvan.sievers,martin.wehrle,malte.helmert}@unibas.ch

Michael Katz
IBM Watson Health, Haifa, Israel

katzm@il.ibm.com

Abstract

Symmetry-based state space pruning techniques have proved
to greatly improve heuristic search based classical plan-
ners. Similarly, abstraction heuristics in general and pattern
databases in particular are key ingredients of such planners.
However, only little work has dealt with how the abstraction
heuristics behave under symmetries. In this work, we inves-
tigate the symmetry properties of the popular canonical pat-
tern databases heuristic. Exploiting structural symmetries, we
strengthen the canonical pattern databases by adding sym-
metric pattern databases, making the resulting heuristic in-
variant under structural symmetry, thus making it especially
attractive for symmetry-based pruning search methods. Fur-
ther, we prove that this heuristic is at least as informative as
using symmetric lookups over the original heuristic. An ex-
perimental evaluation confirms these theoretical results.

Introduction
Heuristic search is a state-of-the-art approach to cost-
optimal classical planning. There are two main components
that speed up current planners based on heuristic search. The
first one is informative admissible heuristics. Over the years,
multiple admissible heuristic classes have been introduced
for planning. One such class is abstraction heuristics, with
a famous representative being the pattern database (PDB)
heuristics (Culberson and Schaeffer 1998; Edelkamp 2001;
Haslum et al. 2007). The second component is search space
pruning techniques, with a prominent representative being
symmetry-based pruning search algorithms (Pochter, Zo-
har, and Rosenschein 2011; Domshlak, Katz, and Shleyf-
man 2012; 2015). The approach is based on finding and ex-
ploiting state space automorphisms. These automorphisms
essentially define symmetries between states, allowing to
modify the search algorithms to take advantage of this in-
formation by pruning states that are symmetric to previously
seen ones.

When using symmetry-based pruning in heuristic search,
it is important to understand how the chosen heuristic in-
teracts with symmetries. Shleyfman et al. (2015) perform
such an investigation for all major planning heuristic classes,
with the exception of abstraction heuristics. They show that
many heuristics are either invariant under symmetry or can

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

be easily adjusted to become such. This is an important re-
sult that affects the choice of the actual search algorithm.
If the heuristic is not invariant under symmetry, the choice
which of the (symmetric) search nodes to prune can greatly
affect the outcome. In classical heuristic search, one pop-
ular technique to offset the consequences of this decision
is symmetric lookups, also known as dual lookups, which
compute the heuristic values also for the symmetric states
(Felner et al. 2005; 2011). If the heuristic in use is in-
variant under symmetry, such symmetric lookups are of
course not useful. Sievers et al. (2015a) investigated the ef-
fect of symmetric lookups for classical planning. In partic-
ular, they applied symmetric lookups to several abstraction
heuristics, such as merge-and-shrink (Helmert et al. 2014;
Sievers, Wehrle, and Helmert 2014), CEGAR (Seipp and
Helmert 2014) and canonical pattern databases (CPDBs)
(Haslum et al. 2007).

Another way to use information from symmetries is to
exploit them to strengthen existing heuristics. Sievers et
al. (2015b) use factored symmetries to enrich merge-and-
shrink heuristics. We continue this line of work with the
CPDB heuristic in this paper, exploiting structural symme-
tries (Shleyfman et al. 2015) to strengthen the CPDB heuris-
tic by adding symmetric PDBs. As a result, we obtain a
heuristic that is invariant under symmetry, making it appeal-
ing to be used in symmetry-based pruning search algorithms.
Furthermore, the resulting heuristic is at least as informative
as using symmetric lookups over the original CPDB heuris-
tic. As the enhanced heuristic operates over a larger collec-
tion of PDBs, in order to reduce the memory consumption,
we propose keeping symmetric PDBs implicitly, generaliz-
ing previously used domain-dependent techniques (Felner
et al. 2005; Helmert and Röger 2010) to classical domain-
independent planning. We perform an empirical investiga-
tion, showing the benefits of the suggested approach in terms
of both increased informativeness and improved memory
consumption for PDB storage.

Background
We consider planning tasks in the SAS+ formalism
(Bäckström and Nebel 1995), augmented with action costs.
In this formalism, a planning task is a tuple Π =
〈V,O, s0, s?〉, where V is a finite set of finite state variables
v, each associated with a domain D(v). A partial state s



A1

p1

t2

A2

A3
p4

A4 t1

43

43

43

30

B1

B2

p3

B3 p5

B4

35 17

39

23

47

C1

p2

C2C3C4
292142

139

19
0

15
7

Figure 1: Instance #5 of the transport-opt11 domain,
with symmetric packages and trucks highlighted.

assigns each variable v ∈ vars(s) a value from D(v), de-
noted s[v], where vars(s) ⊆ V . If vars(s) = V , s is called
a state. Two partial states s and s′ comply if s[v] = s′[v] for
all v ∈ vars(s) ∩ vars(s′). O is a finite set of operators o,
each of the form o = 〈pre(o), eff (o), cost(o)〉, where both
pre(o) and eff (o) are partial states and cost(o) ∈ N+

0 is the
non-negative cost of the operator. s0 is the initial state and
s? is the goal description, a partial state.

The semantics of a planning task is defined as follows.
An operator o ∈ O is applicable in a state s if pre(o)
complies with s. Its application in s results in the state s′,
denoted s(o), that complies with eff (o) and for all v 6∈
vars(eff (o)), s′[v] := s[v]. An s-plan is a sequence of op-
erators π = 〈o1, . . . , on−1〉 such that it is iteratively appli-
cable starting in s and finally leads to some goal state sn,
i. e. a state that complies with s?. Formally, there must exist
states s1, . . . sn with s1 = s such that oi is applicable in si
and si+1 = si(oi). An s-plan is called a plan if s = s0. The
cost of such a plan π is the sum of its operators’ cost, i. e.
cost(π) =

∑n
i=1 cost(oi). An optimal plan is a plan with

minimal cost among all plans. Optimal planning deals with
finding optimal plans.

Figure 1 shows our running example (ignoring the col-
ors for the moment), instance #5 of the TRANSPORT do-
main from the optimal sequential track of the International
Planning Competition 2011. There are three cities A, B, and
C, each with four locations 1, . . . , 4. Locations of cities are
connected by roads of a certain length as shown in the figure.
There are five packages p1, . . . , p5, drawn at their initial lo-
cations, that must be delivered to the locations indicated by
dotted arrows. To achieve this, there are two trucks t1 and
t2, drawn at their initial locations, each with a capacity of
carrying up to three packages. The planning task has three
types of operators: PICK-UP and DROP for loading and un-
loading of packages in and from trucks, incurring cost of 1,
and DRIVE for moving trucks between two locations if there
is a road connecting them, incurring cost equal to the length
of the road. A typical SAS+ task uses five state variables vpi
for the packages pi, encoding at which location or in which
truck a package is, and four state variables vti and vci , en-
coding the location and the available capacity of the trucks
ti, respectively.

For the remainder of this section, we assume that a plan-

ning task Π = 〈V,O, s0, s?〉 with states S is given. A
heuristic is a function h : S 7→ N+

0 that assigns each state
s an estimate of the cost-to-go to reach a goal state. The
perfect heuristic h∗ assigns each states s the true minimal
cost of reaching a goal state. A heuristic h is admissible if
it never overestimates the true cost, i. e. h(s) ≤ h∗(s) for
all states s. Combining the A∗ search algorithm (Hart, Nils-
son, and Raphael 1968) with an admissible heuristic results
in finding optimal plans.

Pattern Databases
A pattern database (PDB) (Culberson and Schaeffer 1998)
is a heuristic defined by a subset of the planning task’s vari-
ables, P ⊆ V , called the pattern. The pattern induces an ab-
straction of the original planning task by considering states
equivalent iff they agree on all variables from the pattern,
i. e. states s and s′ are considered equivalent iff s[v] = s′[v]
for all v ∈ P . We note that for the case of SAS+ tasks,
the abstract planning task ΠP = 〈P,OP , sP0 , sP? 〉 can be
obtained from Π by simply syntactically removing all ref-
erences to variables not contained in P . A PDB for pattern
P , denoted hP , stores perfect heuristic values for ΠP and a
perfect hash function to map states s of Π to their abstract
counterparts sP of ΠP . PDBs are admissible heuristics due
to the nature of the state space abstraction.

Heuristics in general and PDBs in particular are additive
if their heuristic values can be summed without violating ad-
missibility of the resulting heuristic for all states. Formally, a
set of patterns (also called pattern collection) {P1, . . . , Pn}
for Π is additive (and hence the set of PDBs {hP1 , . . . , hPn}
is additive) if the heuristic h(s) :=

∑n
i=1 h

Pi(s) is admissi-
ble for all states s ∈ S.

A simple additivity criterion (a sufficient, but not neces-
sary condition of additivity), has been presented by Haslum
et al. (2007). Two patterns P and Q for Π are disjoint-
additive if there is no operator o ∈ O such that variables
v ∈ P and v′ ∈ Q are both affected by o, i. e. v, v′ ∈
vars(eff (o)). A set of patterns is disjoint-additive if all pat-
terns of the set are pairwise disjoint-additive. Given a pattern
collection C and the collection A of all maximal (w.r.t. set
inclusion) disjoint-additive subsets of C, the canonical PDB
(CPDB) heuristic (Haslum et al. 2007) for a state s is defined
as

hCC (s) = max
B∈A

hB(s) = max
B∈A

∑
P∈B

hP (s).

Informally, the CPDB heuristic computes the sum over
PDBs whenever this is admissible, and the maximum other-
wise. Note that this is the best way of admissibly combining
the patterns in C for the disjoint additivity criterion.

Haslum et al. (2007) also presented a hill climbing (HC)
procedure that performs a search in the space of pattern col-
lections, aiming at obtaining pattern collections which yield
the best results with the CPDB heuristic. In a nutshell, the
HC procedure initializes the pattern collection with single-
ton patterns for all variables mentioned in the goal. It then
iteratively considers adding new patterns to the collection
that are one-variable extensions of patterns from the current
collection (patterns are extended by adding one causally rel-



Init {vp1} {vp2} {vp3} {vp4} {vp5}

Iter #1 {vp1} {vp2} {vp3} {vp4} {vp5}{vt1 , vp1}

Iter #2 {vp1} {vp2} {vp3} {vp4} {vp5}{vt1 , vp1}

{vt1 , vt2 , vp1}

Prune {vp2} {vp3} {vp4} {vp5} {vt1 , vt2 , vp1}

Figure 2: Several iterations of HC on instance #5 of the
transport-opt11 domain, showing the current pattern
collections and their maximal disjoint-additive subsets.

evant variable to it). These candidate patterns are evaluated
by computing the CPDB heuristic that would result from
including the candidate pattern on sample states. The pro-
cedure stops if no significant improvement can be obtained
or a time limit is reached. At the end, all patterns that are
only part of maximal disjoint-additive subsets that are dom-
inated by others are pruned from the collection. The com-
bination of the CPDB heuristic with pattern collections ob-
tained through HC is commonly denoted by iPDB in the lit-
erature.

Figure 2 shows two exemplary iterations of the HC pro-
cedure. At each step, it lists the current pattern collec-
tion and depicts the maximal disjoint-additive subsets by
dashed boxes around the patterns they contain. The initial
pattern collection contains all singleton patterns for goal
variables. In the first iteration, an extension of {vp1} with
{vt1} is added to the collection, and in the second iteration,
{vt1 , vt2 , vp1} is added, introducing new maximal disjoint-
additive subsets. After pruning the dominated patterns {vp1}
and {vt1 , vp1} and the maximal disjoint-additive subsets
they are part of in an optimization step, all remaining pat-
terns are pairwise disjoint-additive, and hence a single max-
imal disjoint-additive subset remains, shown in black in the
figure. A computation of the CPDB heuristic hence adds all
heuristic values of the PDBs for the individual patterns, i. e.
hCC (s) = h{v

p2}(s)+h{v
p3}(s)+h{v

p4}(s)+h{v
p5}(s)+

h{v
t1 ,vt2 ,vp1}(s).

Structural Symmetries
Shleyfman et al. (2015) defined structural symmetries for
STRIPS planning tasks. Later, the definition was adapted
to SAS+ for Fully Observable Non-deterministic Planning
(Winterer, Wehrle, and Katz 2016). Here, we restrict the def-
inition of Winterer, Wehrle, and Katz (2016) to the classical
setting.

Definition 1 (Structural Symmetry). For a SAS+ planning
task Π = 〈V,O, s0, s?〉, let F be the set of Π’s facts, i. e.,
pairs 〈v, d〉 with v ∈ V , d ∈ D(v). A structural symmetry
for Π is a permutation σ : V ∪ F ∪O → V ∪ F ∪O, where

1. σ(V) = V and σ(F ) = F such that σ(〈v, d〉) = 〈v′, d′〉
implies v′ = σ(v);

2. σ(O) = O such that for o ∈ O, σ(pre(o)) = pre(σ(o)),
σ(eff (o)) = eff (σ(o)), cost(σ(o)) = cost(o);

3. σ(s?) = s?;

where σ({x1, . . . , xn}) := {σ(x1), . . . , σ(xn)}, and for a
partial state s, s′ := σ(s) is the partial state obtained from s
such that for all v ∈ vars(s), σ(〈v, s[v]〉) = 〈v′, d′〉 implies
s′[v′] = d′.

Note that given a structural symmetry σ, its application
to sets or tuples X is naturally defined as the set/tuple of
element-wise applications of σ. The set of all structural sym-
metries ΓΠ of a planning task Π forms a group under the
composition operation. In practice, a set of structural sym-
metries that generates (a subgroup of) the symmetry group
ΓΠ can be efficiently computed using off-the-shelf tools for
discovery of automorphisms in explicit graphs (Shleyfman
et al. 2015). For simplicity, in what follows, by a symmetry
group Γ we refer to a subgroup of the symmetry group ΓΠ

of the planning task Π.
In the running example shown in Figure 1, we find a set

of symmetry generators Σ consisting of three elements. One
generator permutes the variables vp1 and vp2 , another one
the variables vp2 and vp3 , which together cover the symme-
tries between the packages p1, p2, and p3 that all need to be
delivered to the same goal location (highlighted in blue in
the figure).1 The third generator permutes the variables of
the trucks, i. e. it swaps vt1 with vt2 , and vc1 with vc2 , hence
covering the symmetry between the trucks (highlighted in
red in the figure). By composing these three generators, we
obtain a symmetry group of the planning task.

Symmetry-based pruning search algorithms use symme-
tries to prune some of the symmetric states encountered dur-
ing search (if previously seen symmetric states have been
reached with the same or lower cost). DKS (Domshlak,
Katz, and Shleyfman 2012) is such an algorithm. It runs A∗

and performs additional duplicate pruning with structural
symmetries. This preserves optimality because due to the
structure-preserving property of goal-stable automorphisms,
a plan from state s exists iff the plan under symmetry (hence
of the same cost) exists from the symmetric state s′. In our
running example, any two states that only differ in that the
positions of p1 and p2 are swapped are symmetric under the
first symmetry generator and hence it is enough to consider
only one of the two states in a forward search.

Symmetric lookups for classical planning (Sievers et al.
2015a) are a technique to exploit (structural) symmetries
during search such as A∗. For a given heuristic h, a state
s and a symmetry group Γ, the symmetric lookup heuris-
tic over h is defined as hSL(s) := maxs∈S h(s), where
S := {s, s1, . . . , sm} is a set of states symmetric to s un-
der structural symmetries from Γ, including s itself. S can
be chosen arbitrarily to trade off computation time against
informativeness of the symmetric lookups, i. e. m = 0 is

1Domshlak, Katz, and Shleyfman (2012) showed that for use in
a forward search, structural symmetries do not need to stabilize the
initial state.



possible as well as computing the set of all states symmetric
to s under Γ.

Symmetric Patterns and Implicit PDBs
Our method to enhance the CPDB heuristic is based on com-
puting symmetric patterns of the pattern collection obtained
via HC and adding the PDBs for these symmetric patterns to
the CPDB heuristic.

Definition 2 (Symmetric Patterns). Given a pattern P =
{v1, . . . , vn}, the symmetric pattern under structural sym-
metry σ is defined as σ(P ) = {σ(v1), . . . , σ(vn)}.

Our first result establishes that a symmetric PDB has the
same heuristic values as the original PDB for all states under
the mapping of the symmetry.

Theorem 1. Let Π be a SAS+ planning task, P be a pattern,
and σ be a structural symmetry of Π. For each state s of Π
we have hP (s) = hσ(P )(σ(s)).

Proof. Let Q = σ(P ) and let ΠP and ΠQ be the abstract
planning tasks. Note that σ maps ΠP to ΠQ, mapping vari-
ables, operators, and the goal. Let sP be the partial state ob-
tained from s by restricting s to the variables in P . Then sP
is a state in ΠP . Similarly, let tQ be the partial state obtained
from t := σ(s) by restricting t to the variables inQ. Then tQ
is a state in ΠQ. Further, note that σ(sP ) = tQ, i. e., σ maps
sP to tQ. Since σ is a structural symmetry, there is a 1:1 cor-
respondence between the paths from s and t in the original
state space of Π. As ΠP and ΠQ are both abstractions of the
same state space (that of Π), abstract paths from sP and tP
correspond to paths from s and t, and hence there is also a
1:1 correspondence between these paths in the abstractions,
giving us the desired result.

Based on this result, which is in the spirit of symmetric
lookups, we suggest the following implicit representation of
symmetric PDBs that avoids to compute the actual PDB. For
a pattern P and a symmetric pattern Q such that σ(Q) =
P for some structural symmetry σ, instead of storing the
PDBs (i. e. computing the abstract state distances) for both
P and Q, we can compute the PDB for P and only keep
the tuple 〈hP , σ〉 as an implicit representation of the PDB
for Q. When computing a heuristic value for state s with
the symmetric PDB for Q, we can exploit Theorem 1 and
reduce this computation to a lookup in the PDB for P by the
following computation: hQ(s) = hP (σ(s)).

To make the computation of the lookup in the symmetric
PDB more efficient, we do not need to permute the entire
state s, but only the partial state sQ, i. e. the part of s relevant
to Q. Hence it is enough to store the part of σ relevant to Q,
which allows us to map sQ to the partial state σ(s)P , i. e.
the symmetric partial state relevant to P . Then we can look
up the heuristic value in hP and return it. While this still
incurs a slight runtime overhead when computing heuristic
values compared to lookups in a fully computed PDB, the
computation time required to compute the full symmetric
PDB and the memory required to store it can be avoided.

Canonical PDBs and Structural Symmetries
We now turn our attention to dealing with pattern collections
as used by the CPDB heuristic. Our first definition, however,
is independent of the way the pattern collection is obtained.

Definition 3. Given a symmetry group Γ, a pattern collec-
tion C is closed under symmetry group Γ if for all structural
symmetries σ ∈ Γ and for all patterns P ∈ C, σ(P ) ∈ C.

Informally, the pattern collection is closed under symme-
try if all symmetric patterns of all patterns are already part of
the collection. Naturally, not all collections are closed under
symmetry. Given a collection C that is not closed under Γ,
adding all symmetric patterns to the collection results in the
symmetric closure C that is closed under symmetry group Γ.

From here on, we focus on pattern collections that are
disjoint-additive, as required by the CPDB heuristic.

Theorem 2. Given a structural symmetry σ and a disjoint-
additive pattern collection C, the pattern collection σ(C) is
disjoint-additive.

Proof. Let P and Q be two patterns in C. Since C
is disjoint-additive, for all operators o ∈ O we have
vars(eff (o)) ∩ P = ∅ or vars(eff (o)) ∩ Q = ∅, and thus
vars(eff (σ(o)))∩σ(P ) = ∅ or vars(eff (σ(o)))∩σ(Q) = ∅
because σ is a structural symmetry. Hence σ(P ) and σ(Q)
are disjoint-additive, and since this holds for any pair of pat-
terns from C, also σ(C) is disjoint-additive.

With this result, we can now state that the CPDB heuristic
is invariant under a given symmetry group if used with a
pattern collection that is closed under the symmetry group.

Theorem 3. Given a symmetry group Γ and a pattern col-
lection C, if C is closed under Γ, then for each state s and
for each structural symmetry σ ∈ Γ, we have hCC (s) =
hCC (σ(s)).

Proof. Let A be a maximal disjoint-additive subset of C.
Then, from Theorem 2 we have that σ(A) is also disjoint-
additive. Further, by Definition 3, since C is closed under Γ,
we have σ(A) ⊆ C. Assume to the contrary of maximal-
ity of σ(A) that there exists a pattern P in C \ σ(A), such
that σ(A)∪{P} is disjoint-additive. Then, from Theorem 2,
A ∪ {Q} for some Q such that σ(Q) = P is also disjoint-
additive. Further, Q 6∈ A, since P 6∈ σ(A), contradicting the
maximality of A.

Heuristics that are invariant under symmetry are particu-
larly attractive for search techniques that use structural sym-
metries for pruning such as DKS. DKS prunes a search node
if the state s of the node is symmetric to the state s′ of a pre-
viously seen node. If the heuristic in use is invariant under
symmetry, then the search effort from these two states on-
ward is the same, whilst if the heuristic is not invariant under
symmetry, it might be beneficial to continue with the state s
instead of pruning it and relying on s′.

Another direct consequence of Theorem 3 is that there is
no theoretical added value in performing symmetric lookups
over the CPDB heuristic with pattern collections that are
closed under symmetry. In fact, in general the symmetric



lookups heuristic over the CPDB heuristic with C is domi-
nated by the CPDB heuristic with the symmetric closure C,
as the next theorem shows.

Theorem 4. Given a symmetry group Γ and a pattern col-
lection C, for each state s, hCCSL(s) ≤ hCC (s).

Proof. Since C ⊆ C, we have hCC (s′) ≤ hCC (s′) for all
states s′. In particular, it holds for each s′ = σ(s) for some
σ ∈ Γ. From Theorem 3 we have that hCC (s) = hCC (s′) for
all s′ = σ(s), and thus hCC (σ(s)) ≤ hCC (s) for all σ ∈ Γ,
giving us the desired result.

Implementation
Building on the theoretical results of the previous sections,
we present the following approach to enhance the CPDB
heuristic through using structural symmetries. The algo-
rithm begins with computing symmetries of the given plan-
ning task. In practice, a symmetry group Γ is usually not
given explicitly as a collection of its elements (the symme-
try group ΓΠ of a task Π is not known to be polynomially
computable), but rather via a set of symmetry generators Σ
that span the group Γ. Such symmetry generators can be
computed in low-order polynomial time in the size of the
planning task with off-the-shelf tools for discovery of auto-
morphisms in explicit graphs.2

The algorithm then continues with the computation of a
pattern collectionC with the HC procedure as usual and then
turns this collection C into the symmetric closure C. After-
wards, it prunes patterns from dominated maximal disjoint-
additive subsets as usual (to avoid storing unnecessary PDBs
and performing unnecessary heuristic computations also for
the symmetric PDBs), and then computes the PDBs of the
patterns of the final pattern collection for the CPDB heuris-
tic, possibly using the implicit representation for PDBs.
From Theorem 3, we know that the resulting heuristic is in-
variant under symmetry. Additionally, from Theorem 4 we
also know that this approach is at least as good using sym-
metric lookups with the CPDB heuristic on the original col-
lection C.

Besides using HC and computing PDBs, the main ingre-
dient of our algorithm is the computation of the symmetric
closure C given a pattern collection C. Performing a com-
plete breadth-first search in the space of symmetric patterns,
we can compute C from C for any given pattern collection
C, independent of its origin. The open list of the search is
initialized with all patterns from C. Expanding a pattern P
consists in applying each structural symmetry σ from Σ to
P once, adding the symmetric patterns σ(P ) to the open
list. After expansion, P is added to the closed list to avoid
generating duplicates. The search runs until the open list is
empty, at which point it generated all symmetric patterns
for all P ∈ C (i. e. applying all symmetries of the group
Γ given implicitly through the generators Σ to all patterns).

2We only need to consider generators σ that do not stabilize
variables, i. e. for which σ(v) 6= v for at least one variable v, other-
wise we would have σ(P ) = P for any pattern P , and hence iden-
tical perfect heuristic values for both PDBs (that also means if val-
ues of variables are permuted, the heuristic value cannot change).

While the the runtime of this algorithm is exponential in the
variables V of the planning task in the worst case, the com-
putation is very fast in practice.

The basic variant of our approach where we compute full
PDBs for the entire pattern collectionC is called HC-CPDB-
symm. The alternative is to compute implicit PDBs for all
symmetric patterns added to C, i. e. for patterns in C \ C.
This requires to compute full PDBs for all patterns in C and
to adapt the above algorithm to not only generate the sym-
metric patterns, but also the symmetry mappings from the
symmetric patterns back to their original patterns (in C). We
call this approach HC-CPDBS-symm-impl.

We note that the original pattern collection might already
include some patterns that are symmetric to each other and
further savings might be obtained by keeping the PDBs of
these patterns implicitly as well. However, detecting these
symmetry relations amongst patterns and deciding which of
the PDBs to keep implicit is computationally expensive, and
hence in this work, we restrict the use of implicit PDBs to
only the newly generated symmetric patterns.

Experiments
In this section, we evaluate our approach which we imple-
mented in Fast Downward (Helmert 2006). Our benchmark
set comprises the planning domains of the optimal sequen-
tial tracks of all International Planning Competitions (IPCs)
up to 2014, which gives rise to 1667 tasks in 57 domains.
The experiments were run on machines with Intel Xeon E5-
2660 CPUs running at 2.2 GHz, with each run limited to
30 minutes and 2GB of memory. All configurations use a
time limit of 900s for the hill climbing procedure HC as sug-
gested by Scherrer, Pommerening, and Wehrle (2015), and
the (Fast Downward) default maximum sizes of 2000000
states for each PDB and 20000000 states for all PDBs in
total.3 Symmetries are computed with the graph automor-
phism tool Bliss (Junttila and Kaski 2007) as described by
e. g. Shleyfman et al. (2015), and the total time budget for
all computations related to symmetries is 300s. In all ex-
periments, when not using the DKS search algorithm for
symmetry-based pruning, we use A∗. In both cases, when re-
porting the number of expansions, we always report expan-
sions until last f -layer to avoid tie-breaking issues, aggre-
gated over commonly solved tasks. The runtimes displayed
in the tables are in seconds, averaged over commonly solved
tasks either by using the geometric mean (gm) or the arith-
metic mean (am). Best results are highlighted in bold.

A∗ Search
We begin our evaluation with using A∗ to eliminate the in-
fluence of symmetry-based pruning of the DKS algorithm
which we evaluate afterwards. We compare the original
heuristic HC-CPDB (corresponding to iPDB (Haslum et al.

3We also experimented with (much) smaller and somewhat
larger size limits to investigate their potential influence, but found
no change in the relative performance of the different heuristics,
and also the absolute performance only changed marginally (max-
imum change of 6 solved tasks). Hence we only report results for
the default size limits as used in Fast Downward.



HC-CPDB

orig symm symm-impl SL

Coverage (# solved tasks) 814 813 813 809
Expansions 85th percentile 513000 429290 429290 429290
Expansions 90th percentile 926373 880093 880093 909015
Expansions 95th percentile 3378274 2661710 2661710 2698737
Search out of memory 774 736 730 483
Search out of time 70 109 115 366
Search time (gm) 0.43 0.42 0.43 0.82
Total time (gm) 4.10 4.14 4.08 5.79
Symmetric PDBs time (gm) - 0.00 0.00 -
Symmetric PDBs time (am) - 3.02 0.00 -

Table 1: A∗ with the HC-CPDB heuristic in different vari-
ants: the original heuristic, the heuristic enhanced with sym-
metric PDBs (full PDBs and implicit PDBs), and using sym-
metric lookups over all symmetric states.

2007) as implemented in Fast Downward (Sievers, Ortlieb,
and Helmert 2012)) to the two variants of our approach,
i. e. HC-CPDB-symm and HC-CPDB-symm-impl. Further-
more, to test the practical implications of Theorem 4, we in-
clude the combination of the CPDB heuristic with symmet-
ric lookups, denoted HC-CPDB-SL (Sievers et al. 2015a),
where we compute the set of all symmetric states for a
given state, using a similar complete breadth-first search as
to compute all symmetric patterns.4 Table 1 shows coverage,
number of expansions (different percentiles over commonly
solved tasks), the number of tasks for which the search hit
the memory and time limits, the search time, the total time
(which in contrast to search time includes the time to com-
pute symmetries and the time to perform HC), and the time
required to compute the symmetric closure of the pattern
collection and the PDBs for the additional symmetric pat-
terns (also included in total time but not in search time).

The first observation we make is that compared to the
baseline, coverage increases with neither of the approaches
of using symmetries. In particular, using symmetric lookups,
coverage decreases slightly, as already noted by Sievers
et al. (2015a). While using symmetric lookups only mod-
erately decreases the number of expansions required, our
approaches require the fewest expansions. In fact, as can
be seen from the scatter plot shown in Figure 3, our ap-
proach HC-CPDB-symm-impl (the same as HC-CPDB-
symm) dominates HC-CPDB, requiring strictly fewer ex-
pansions (in 194 tasks across 33 domains). While not shown,
the same is true for HC-CPDB-symm(-impl) compared to
HC-CPDB-SL, hence indeed confirming Theorem 4. Table 2
shows the summed expansions of all four variants for the 33
domains in which these variants require different amounts
of expansions. Differences between HC-CPDB-symm and
HC-CPDB-symm-impl are due to the HC procedure hitting
the time limit in different iterations.

4Sievers et al. (2015a) instead report results for a set of 10 ran-
domly generated symmetric states, but this configuration solves 5
tasks less than using the full set in our experiments.

100 102 104 106 108

100

102

104

106

108

u
n
s.

unsolved

HC-CPDB

H
C
-C

P
D
B
-s
y
m
m
-i
m
p
l

Figure 3: Expanded states for HC-CPDB vs HC-CPDB-
symm-impl.

HC-CPDB

orig symm symm-impl SL

BARMAN-OPT11 16836883 15368212 15368212 15368292
DEPOT 1445907 1345976 1345976 1355988
DRIVERLOG 2958328 2683812 2683812 2695195
ELEVATORS-OPT08 6314143 6212113 6212113 6212113
ELEVATORS-OPT11 5311976 5209946 5209946 5209946
GED-OPT14 27170082 9065556 9065556 10038602
GRIPPER 12533069 12532583 12532583 12532801
LOGISTICS00 218153 217441 217441 217441
LOGISTICS98 286292 259265 259265 267515
MICONIC 90265550 88049903 88049903 88134507
MPRIME 1229963 1109620 1109620 1229639
MYSTERY 1455463 1443841 1443841 1455250
NOMYSTERY-OPT11 11935954 8383343 8383343 8493587
OPENSTACKS 747591 746430 746430 746542
PEGSOL-08 1150308 466075 465372 538683
PEGSOL-OPT11 1363689 676404 669728 750551
PIPESWORLD-NOTANK. 33275583 33235577 33235577 33266046
PIPESWORLD-TANKAGE 8574679 8514265 8514265 8514265
PSR-SMALL 5155732 5155718 5155718 5155718
SCANALYZER-08 17195126 17035042 17035042 17105413
SCANALYZER-OPT11 17195120 17035036 17035036 17105407
SOKOBAN-OPT08 18173615 14928222 14928222 15142916
SOKOBAN-OPT11 5132629 4542038 4542038 4555111
STORAGE 5988362 5665472 5665472 5926753
TETRIS-OPT14 639332 524044 524044 635909
TIDYBOT-OPT11 2197242 2020309 2020309 2163974
TIDYBOT-OPT14 3824249 3653359 3653359 3791913
TPP 4138020 4137980 4137980 4137990
TRANSPORT-OPT08 1293570 1052443 1052443 1052443
TRANSPORT-OPT11 1291983 1050856 1050856 1050856
TRANSPORT-OPT14 13063876 13062044 13062044 13062044
TRUCKS 14194832 13379703 13379703 13379703
ZENOTRAVEL 1518693 1517833 1517833 1517895

Table 2: Expansions summed for each domain where the
configurations of Table 1 require a different amount of ex-
pansions.



C {vp2} {vp3} {vp4} {vp5} {vt1 , vt2 , vp1}

C

{vt1 , vt2 , vp1}

{vp3} {vp4} {vp5} {vp2}

{vp1}{vt1 , vt2 , vp2} {vt1 , vt2 , vp3}

Figure 4: Computing the symmetric closureC fromC as ob-
tained by HC on instance #5 of the transport-opt11
domain, including dominance pruning; showing the pattern
collections and their maximal disjoint-additive subsets.

Coming back to our example from Figure 1, the baseline
(HC-CPDB) computes the pattern collection as shown in the
example computation in Figure 2. This pattern collection C
yields a heuristic value of hCC (s0) = 2 + 2 + 2 + 2 + 180 =
188 for the initial state, while the optimal plan cost is 614.
Note that all PDBs for packages not at a goal contribute ex-
actly 2 to the heuristic value, for loading and unloading the
package. The PDB with the two truck variables (in addition
to a package variable) computes a value of 139 + 39 + 2, for
driving t2 twice and loading and unloading p1.

Our approach HC-CPDB-symm continues from this pat-
tern collection C as illustrated in Figure 4. To obtain the
symmetric closure of C from C, the symmetric patterns
are added to C as shown. This results in two additional
maximal disjoint-additive subsets, shown in red and blue in
the figure. The maximal disjoint-additive subset that groups
all singleton PDBs for each pi is dominated by all oth-
ers and pruned (not shown). With C, the CPDB heuris-
tic computes the maximum over the black, red, and blue
maximal disjoint-additive subsets, e. g. for the initial state,
hCC (s0) = max{180 + 2 + 2 + 2 + 2, 476 + 2 + 2 + 2 +
2, 180 + 2 + 2 + 2 + 2} = 484, a considerable increase, due
to the addition of the pattern {vt1 , vt2 , vp2}. This exemplar-
ily explains the fewer expansions required to solve this task
with HC-CPDB-symm (c. f. Table 2).

In principle, the HC procedure could find this “better” pat-
tern directly, but this is very unlikely to happen for the fol-
lowing reasons. Only variables of trucks (location and ca-
pacity) are causally relevant to the variables of packages.
Hence the only candidate variables for extending patterns
are the variables of trucks. In particular, because there is at
most one variable of a package in each pattern for the same
reason, adding the capacity variable of any truck can never
improve the heuristic. To summarize, the only possibility of
extending patterns is to add the location variable of a truck.
However, adding a single location variable of a truck to any
of the initial singleton patterns only increases the maximum
heuristic value of the PDB from 2 to 3. This increase in
heuristic in quality is high when the first pattern containing a
variable of a truck is added, but after the collection contains
the pattern {vt1 , vt2 , vp1}, extending any of the other pat-
terns does not yield a notable heuristic improvement. Only
adding the location variables of both trucks simultaneously
would allow the HC procedure to find the “better” pattern

100 102 104 106 108

100

102

104

106

108

u
n
s.

unsolved

HC-CPDB-symm

H
C
-C

P
D
B
-s
y
m
m
-i
m
p
l

Figure 5: Estimated number of integers required to be stored
for symmetric PDBs, comparing using full against implicit
PDBs.

we get via adding symmetric patterns.
Going back to the overview shown in Table 1, compar-

ing the reasons of failure of search for the baseline and our
approaches, we observe a trade-off, i. e. our approaches hit
the time limit more frequently and the memory limit less fre-
quently than the baseline. In general, although the number of
expansions decreases, for the majority of tasks, both search
time and total time are very comparable for the baseline and
our approaches. The runtime does not decrease although the
expansions decrease because the number of PDB lookups
required by the CPDB heuristic on the larger symmetric clo-
sures of pattern collections increases considerably. In par-
ticular, for tasks where adding symmetric patterns results in
many new maximal disjoint-additive subsets of the pattern
collection, the number of PDB lookups required to compute
heuristic values with the CPDB heuristic can increase by up
to two orders of magnitude. This is prohibitively large and
results in the search not completing within the 30 minute
time limit. An example task where this happens is the in-
stance 11-1 of the LOGISTICS00 domain, which is solved
by the baseline but not by our approaches.

Comparing computing full symmetric PDBs against com-
puting implicit symmetric PDBs, we note that as expected,
search time is slightly higher with implicit PDBs due to the
additional computation required to map the abstract state
from the implicit PDB to the original full PDB. Still, the
total runtime is lower. One possible reason for this is the
time required to compute symmetric patterns and PDBs.
Looking at these runtimes, we first note that the overhead
caused by this computation is in general negligible (geo-
metric mean rounded to 0 seconds). Second, looking at the
arithmetic mean, we see that computing full PDBs requires
more time compared to computing implicit PDBs. We also
assess the memory consumption of both our approaches. As
an estimate of memory consumption, Figure 5 shows a scat-
ter plot comparing the number of integers required to store
full PDBs and implicit PDBs. As expected, using implicit
PDBs strictly saves memory compared to storing full PDBs.



HC-CPDB with DKS

orig symm symm-impl SL

Coverage (# solved tasks) 887 893 891 886
Expansions 85th percentile 379185 341430 341430 351576
Expansions 90th percentile 819599 788324 788324 816721
Expansions 95th percentile 3510224 2584593 2584593 2745883
Search out of memory 490 475 472 336
Search out of time 281 290 294 436
Search time (gm) 0.56 0.54 0.54 0.86
Total time (gm) 5.33 5.37 5.22 6.60

Table 3: The DKS search algorithm with the HC-CPDB
heuristic in different variants: the original heuristic, the
heuristic enhanced with symmetric PDBs (full PDBs and
implicit PDBs), and using symmetric lookups over all sym-
metric states.

Symmetry-based Pruning with DKS
After having established that our approach increases heuris-
tic informativeness, we now evaluate our improved CPDB
heuristic, which is invariant under symmetries, in conjunc-
tion with the symmetry-based pruning search algorithm
DKS. Table 3 shows the results for the same comparison as
Table 1.

While using symmetric lookups again only helps in terms
of expansions but not in terms of coverage, we observe that
using our symmetry-improved CPDB heuristics indeed in-
crease coverage compared to the original CPDB heuristic if
combined with the DKS algorithm. The difference in cov-
erage between using full PDBs and implicit PDBS is due
to two tasks where the increased time required to com-
pute heuristic values with implicit PDBs is too large. Fig-
ure 6 compares expansions, confirming the aggregated re-
sults shown in the table. Note that here as well, our im-
proved heuristic strictly dominates the original one in terms
of expansions. Concerning the number of times the search
reaches the time or memory limit, and search and total time,
the results are very similar to the ones with regular A∗. We
conclude that as suspected, using the now invariant-under-
symmetry heuristic HC-CPDB-symm helps improving the
performance of the symmetry-based pruning search algo-
rithm DKS.

Conclusions
In this work, we applied structural symmetries to strengthen
the canonical pattern databases heuristic. In particular, our
approach computes symmetric patterns of the pattern col-
lection used with the canonical pattern databases heuristic,
thus computing the symmetric closure of the pattern collec-
tion. As a result, we obtain a heuristic that is invariant un-
der symmetry, which makes it particularly appealing to be
used with symmetry-based pruning search algorithms. We
also prove that the resulting heuristic dominates the sym-
metric lookups heuristic over the original canonical pat-
tern databases heuristic. Further, in order to allow for stor-
ing the larger symmetry-enhanced pattern collection with-
out significantly increasing the memory consumption, we

100 102 104 106 108

100

102

104

106

108

u
n
s.

unsolved

HC-CPDB

H
C
-C

P
D
B
-s
y
m
m
-i
m
p
l

Figure 6: Expanded states for HC-CPDB vs HC-CPDB-
symm-impl, both combined with DKS.

suggest storing the symmetric pattern databases implicitly,
generalizing an approach previously suggested for domain-
dependent heuristic search to domain-independent classical
planning. Our empirical evaluation shows that it is benefi-
cial to enrich the canonical pattern database heuristic with
symmetric patterns, both improving heuristic informative-
ness and reducing memory consumption of storing the pat-
tern databases if using the implicit representation.

Acknowledgments
This work was supported by the Swiss National Sci-
ence Foundation (SNSF) as part of the project “Reasoning
about Plans and Heuristics for Planning and Combinatorial
Search” (RAPAHPACS).

References
Bäckström, C., and Nebel, B. 1995. Complexity results
for SAS+ planning. Computational Intelligence 11(4):625–
655.
Culberson, J. C., and Schaeffer, J. 1998. Pattern databases.
Computational Intelligence 14(3):318–334.
Domshlak, C.; Katz, M.; and Shleyfman, A. 2012. En-
hanced symmetry breaking in cost-optimal planning as for-
ward search. In McCluskey, L.; Williams, B.; Silva, J. R.;
and Bonet, B., eds., Proceedings of the Twenty-Second Inter-
national Conference on Automated Planning and Schedul-
ing (ICAPS 2012). AAAI Press.
Domshlak, C.; Katz, M.; and Shleyfman, A. 2015. Sym-
metry breaking in deterministic planning as forward search:
Orbit space search algorithm. Technical Report IS/IE-2015-
03, Technion, Haifa.
Edelkamp, S. 2001. Planning with pattern databases. In
Cesta, A., and Borrajo, D., eds., Proceedings of the Sixth Eu-
ropean Conference on Planning (ECP 2001), 84–90. AAAI
Press.
Felner, A.; Zahavi, U.; Schaeffer, J.; and Holte, R. C. 2005.
Dual lookups in pattern databases. In Kaelbling, L. P.,



and Saffiotti, A., eds., Proceedings of the 19th International
Joint Conference on Artificial Intelligence (IJCAI 2005),
103–108. Professional Book Center.
Felner, A.; Zahavi, U.; Holte, R.; Schaeffer, J.; Sturtevant,
N.; and Zhang, Z. 2011. Inconsistent heuristics in theory
and practice. Artificial Intelligence 175:1570–1603.
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A for-
mal basis for the heuristic determination of minimum cost
paths. IEEE Transactions on Systems Science and Cyber-
netics 4(2):100–107.
Haslum, P.; Botea, A.; Helmert, M.; Bonet, B.; and Koenig,
S. 2007. Domain-independent construction of pattern
database heuristics for cost-optimal planning. In Proceed-
ings of the Twenty-Second AAAI Conference on Artificial In-
telligence (AAAI 2007), 1007–1012. AAAI Press.
Helmert, M., and Röger, G. 2010. Relative-order abstrac-
tions for the pancake problem. In Coelho, H.; Studer, R.;
and Wooldridge, M., eds., Proceedings of the 19th European
Conference on Artificial Intelligence (ECAI 2010), 745–750.
IOS Press.
Helmert, M.; Haslum, P.; Hoffmann, J.; and Nissim, R.
2014. Merge-and-shrink abstraction: A method for gener-
ating lower bounds in factored state spaces. Journal of the
ACM 61(3):16:1–63.
Helmert, M. 2006. The Fast Downward planning system.
Journal of Artificial Intelligence Research 26:191–246.
Junttila, T., and Kaski, P. 2007. Engineering an efficient
canonical labeling tool for large and sparse graphs. In Pro-
ceedings of the Ninth Workshop on Algorithm Engineering
and Experiments (ALENEX 2007), 135–149. SIAM.
Pochter, N.; Zohar, A.; and Rosenschein, J. S. 2011. Exploit-
ing problem symmetries in state-based planners. In Burgard,
W., and Roth, D., eds., Proceedings of the Twenty-Fifth AAAI
Conference on Artificial Intelligence (AAAI 2011), 1004–
1009. AAAI Press.
Scherrer, S.; Pommerening, F.; and Wehrle, M. 2015. Im-
proved pattern selection for PDB heuristics in classical plan-
ning (extended abstract). In Lelis, L., and Stern, R., eds.,
Proceedings of the Eighth Annual Symposium on Combina-
torial Search (SoCS 2015), 216–217. AAAI Press.
Seipp, J., and Helmert, M. 2014. Diverse and additive Carte-
sian abstraction heuristics. In Proceedings of the Twenty-
Fourth International Conference on Automated Planning
and Scheduling (ICAPS 2014), 289–297. AAAI Press.
Shleyfman, A.; Katz, M.; Helmert, M.; Sievers, S.; and
Wehrle, M. 2015. Heuristics and symmetries in classical
planning. In Proceedings of the Twenty-Ninth AAAI Con-
ference on Artificial Intelligence (AAAI 2015), 3371–3377.
AAAI Press.
Sievers, S.; Wehrle, M.; Helmert, M.; and Katz, M. 2015a.
An empirical case study on symmetry handling in cost-
optimal planning as heuristic search. In Hölldobler, S.;
Krötzsch, M.; Peñaloza-Nyssen, R.; and Rudolph, S., eds.,
Proceedings of the 38th Annual German Conference on Ar-
tificial Intelligence (KI 2015), volume 9324 of Lecture Notes
in Artificial Intelligence, 151–165. Springer-Verlag.

Sievers, S.; Wehrle, M.; Helmert, M.; Shleyfman, A.; and
Katz, M. 2015b. Factored symmetries for merge-and-shrink
abstractions. In Proceedings of the Twenty-Ninth AAAI Con-
ference on Artificial Intelligence (AAAI 2015), 3378–3385.
AAAI Press.
Sievers, S.; Ortlieb, M.; and Helmert, M. 2012. Efficient
implementation of pattern database heuristics for classical
planning. In Borrajo, D.; Felner, A.; Korf, R.; Likhachev,
M.; Linares López, C.; Ruml, W.; and Sturtevant, N., eds.,
Proceedings of the Fifth Annual Symposium on Combinato-
rial Search (SoCS 2012), 105–111. AAAI Press.
Sievers, S.; Wehrle, M.; and Helmert, M. 2014. Generalized
label reduction for merge-and-shrink heuristics. In Proceed-
ings of the Twenty-Eighth AAAI Conference on Artificial In-
telligence (AAAI 2014), 2358–2366. AAAI Press.
Winterer, D.; Wehrle, M.; and Katz, M. 2016. Structural
symmetries for fully observable nondeterministic planning.
In Kambhampati, S., ed., Proceedings of the 25th Inter-
national Joint Conference on Artificial Intelligence (IJCAI
2016), 3293–3299. AAAI Press.


