
Action Space Reduction for Planning Domains

Harsha Kokel , Junkyu Lee , Michael Katz , Kavitha Srinivas and Shirin Sohrabi
IBM T.J. Watson Research Center, Yorktown Heights, USA

{harsha.kokel, junkyu.lee, michael.katz1, kavitha.srinivas}@ibm.com, ssohrab@us.ibm.com

Abstract
Planning tasks succinctly represent labeled transi-
tion systems, with each ground action correspond-
ing to a label. This granularity, however, is not
necessary for solving planning tasks and can be
harmful, especially for model-free methods. In or-
der to apply such methods, the label sets are of-
ten manually reduced. In this work, we propose
automating this manual process. We characterize
a valid label reduction for classical planning tasks
and propose an automated way of obtaining such
valid reductions by leveraging lifted mutex groups.
Our experiments show a significant reduction in
the action label space size across a wide collection
of planning domains. We demonstrate the benefit
of our automated label reduction in two separate
use cases: improved sample complexity of model-
free reinforcement learning algorithms and speed-
ing up successor generation in lifted planning. The
code and supplementary material are available at
cdhttps://github.com/IBM/Parameter-Seed-Set.

1 Introduction
AI Planning tasks, described in the planning domain descrip-
tion language (PDDL) [McDermott, 2000], induce transition
graphs with states as nodes and transitions between states as
labeled edges. These labeled transition systems (LTS) feature
a unique label for each ground action. They identify transi-
tions induced by the same action on different states with the
same label. In practice, these labels are primarily used to dis-
tinguish applicable operations in a given state. So, a much
smaller, sufficient set of labels might be attainable. Consider
a gripper domain [McDermott, 2000] where a robot moves
balls between two rooms. Figure 1 depicts a PDDL task in
this domain. Consider the lifted action pick and its second
parameter ?r:room. All applicable groundings of the ac-
tion pick in any given state will have the same value for
?r, namely the current room the robot is in. Therefore, this
parameter is not essential for distinguishing LTS transitions.
Note that it does not mean that the parameter can be omit-
ted from the lifted action, as it is essential for defining action
preconditions. On the labeled transition system, however, all
labels of the corresponding grounded actions that differ only

r1 r2

b1 b2

(a)
Gripper task Π = 〈L,O, I, G〉.
• Language L includes:

objects B : r1, r2, b1, b2, g1, g2
types T : room, ball, gripper
variables V : ?r, ?b, ?g, ?f, ?t
predicates P : at robby, at, free, carry

• Initial state I is: {at(b1, r1), at(b2, r1),
at robby(r1), free(g1), free(g2)}

• Goal G is: {at(b2, r2)}
• Actions O consists of:
move : params {?f : room, ?t : room}

: pre {at robby(?f)}
: add {at robby(?t)}
: del {at robby(?f)}

pick : params {?b : ball, ?r : room, ?g : gripper}
: pre {at(?b, ?r), at robby(?r), free(?g)}
: add {carry(?b, ?g)}
: del {at(?b, ?r), free(?g)}

drop : params {?b : ball, ?r : room, ?g : gripper}
: pre {carry(?b, ?g), at robby(?r)}
: add {at(?b, ?r), free(?g))}
: del {carry(?b, ?g)}

(b)

Figure 1: A running example of Gripper task, (a) an initial state with
b1, b2, and robot in room r1, and (b) a normalized PDDL task.

in the room parameter can be safely collapsed into one label,
achieving a smaller set of labels.

It is no coincidence that discrete action sets of small sizes
are also favored by reinforcement learning (RL) approaches.
Choosing from a large collection of mostly irrelevant actions
in a state can be detrimental to model-free methods [Huang
and Ontañón, 2022]. Most RL benchmarks have only a
small number of actions, e.g., Atari benchmarks have at most
18 actions, representing all possible transition labels [Nel-
son, 2021]. When planning problems are cast as Markov
Decision Processes (MDPs), great care is taken in defining
small label sets [Silver and Chitnis, 2020; Fern et al., 2006;

https://github.com/IBM/Parameter-Seed-Set

Dzeroski et al., 2001]. In PDDLGym [Silver and Chitnis,
2020], the label sets are manually crafted by identifying a
subset of lifted action parameters that are inessential for dis-
tinguishing two labels in a state. For example, the ?r:room
parameter from our Gripper example is manually identified
as inessential.

In this work, we propose automating this manual pro-
cess, exploring ways of automatically reducing action labels
in classical planning domains. For that, we characterize a
valid label reduction for classical planning tasks and pro-
pose a way to automatically obtain such a reduction. Fo-
cusing on the reduction of action parameters, we show how
lifted mutex groups [Fišer, 2020] can be leveraged to auto-
matically identify the inessential parameters of the actions
effectively, essentially automating the manual process of Sil-
ver and Chitnis [2020]. Our contributions, however, have a
wider scope. We formally define the problem of obtaining
a parameter seed set and propose to solve this problem by
translating it to a delete-free planning task, proving that the
solution obtained is a valid label reduction. Then we em-
pirically evaluate our approach on 14 IPC domains and 10
hard-to-ground domains [Lauer et al., 2021; Haslum, 2011;
Matloob and Soutchanski, 2016] and show that it achieves a
significant reduction in action labels. Finally, we demonstrate
the benefits of our approach on two use cases, RL and lifted
successor generation [Corrêa et al., 2020]. We empirically
show that the label reduction can help in both cases: it signif-
icantly improves the sample efficiency of standard RL agents
and speeds up the time to generate applicable ground action
in lifted successor generation.

2 Preliminaries
In this section, we first introduce the necessary classical plan-
ning notations and then describe lifted mutex groups that we
use in our proposed approach.

PDDL task
We consider normalized PDDL tasks without axioms and
conditional effects [Helmert, 2009]. A normalized PDDL
task Π = 〈L,O, I, G〉 is defined over a first-order language
L, a finite set of lifted actions O, an initial state specification
I , and a goal specification G.

A first-order language L = 〈B, T ,V,P〉 consists of a fi-
nite number of objects (B), types (T), variables (V), and pred-
icates (P). The association between types and objects is de-
fined by a function D : T 7→ 2B. T contains a special de-
fault type t0. Every object is associated with this default type
such that D(t0) = B. Every pair of types ti, tj ∈ T sat-
isfy one of the following conditions, either D (ti) ⊆ D (tj)
or D (ti) ⊇ D (tj) or D (ti) ∩ D (tj) = ∅. V is a finite set
of variable symbols such that each variable is associated with
a type in T . All variables are represented with a prefix “?”,
for example, ?v. A pair of object and variable (o,?v) are
compatible if o ∈ D(tv), where tv is the type of variable v. A
predicate in P has fixed arity and each argument is associated
with a type in T . An atom is a predicate symbol followed
by a parenthesized list of arguments, predicate(term1,
term2, · · ·) where termi can be a variable or object. For
an atom (or a set of atoms) α, free(α) ⊆ V denotes a set

of variables in the atom (or the set). If free(α) = ∅ then α is
called ground atom; otherwise it is called lifted atom. A lifted
atom is grounded by replacing every variable with a compat-
ible object. If lifted atoms α and α′ have the same predicate
and the types of all the terms in α are subsets of types of re-
spective terms in α′, we say that α is a subset of α′. That is,
p(?a, ?b)vp(?a′, ?b′), if D(ta)⊆D(ta′) and D(tb)⊆D(tb′).
A literal is an atom or negation of an atom.

The initial state specification I is a conjunction of ground
atoms with fluent predicates (that can change over time). The
goal specification G is a conjunction of ground atoms or their
negations. A lifted action o = 〈head , cost , pre, add , del〉 in
O consists of the atom head(o), indicating the name and the
parameters of the action, an optional cost(o), indicating the
cost of performing that operation, the preconditions pre(o),
the add-effects add(o), and the delete-effects del(o), each is
a conjunction of literals over L. For each action o, the set
of action parameters params(o) is defined as free(pre(o)) ∪
free(add(o)) ∪ free(del(o)). Actions with empty parameter
sets are called ground actions. Otherwise, an action can be
grounded by replacing parameters with compatible objects in
the domain.

The set of all ground actions is denoted by O↓. By
o↓(P/θ) we denote a set of ground actions induced by
assigning objects θ to parameter subset P and ground-
ing the remaining parameters with all the compatible ob-
jects. In the gripper example, the ground action set of the
lifted action o = pick(?b,?r,?g) induced by the as-
signment {?b/b1,?g/g1} is o↓

(
{?b/b1,?g/g1}

)
=

{pick(b1,r1,g1),pick(b1,r2,g1)}, where the pa-
rameters ?b and ?g are replaced with the objects mentioned
in the assignment but the parameter ?r is replaced with all
room objects, {r1, r2}.

A state s assigns values TRUE and FALSE to all ground
atoms with fluent predicates. The initial state s0 of the task
assigns value TRUE to all atoms occurring in I , and FALSE to
all other fluent ground atoms. A ground action o is applica-
ble in state s if s |= pre(o), that is, the preconditions of o
are satisfied in the state s. A ground atom α is TRUE in the
successor state if and only if either it has been TRUE in s and
α 6∈ del(o) or α ∈ add(o). A plan for the task is a sequence
of ground actions whose subsequent application leads from
s0 to some state s∗ with s∗ |= G.

Lifted Mutex Groups
A mutex group is a set of mutually exclusive ground
atoms M , of which at any given (reachable from I)
state s at most one can be TRUE. That is, for any
reachable state s, |M ∩ s| ≤ 1 or equivalently |{α | s |=
α, α ∈ M}| ≤ 1. For example, in the gripper domain,
{at(b1,r1),at(b1,r2)} is a mutex group as, in any
given state, ball b1 can only be in one of the rooms. Any
subset of a mutex group is also a mutex group. A lifted mutex
group (LMG) is a set of lifted atoms that produces a mutex
group when grounded. Formally, a lifted mutex group is de-
fined using an invariant candidate.

An invariant candidate is a tuple c = 〈vf , vc,A〉 where
vf (c) (vc(c)) is a finite set of fixed (counted) variables (il-
lustrated in the example below) and A(c) is a finite set of

atoms such that all the variables of the atoms are present
in either vf (c) or vc(c), i.e. free(A(c)) = vf (c)∪ vc(c)
and vf (c)∩ vc(c) = ∅. For example, consider an invari-
ant candidate c= 〈{?b},{?r},{at(?b,?r)} 〉. Dif-
ferent groundings of fixed variables vf (c) = {?b} gener-
ate different sets of ground atoms and different ground-
ing of counted variable vc(c) = {?r} generates ground
atoms within each set. We denote the ground atom set
with down arrow ↓. One of the ground atom sets for
{?b/b1} is c↓(?b/b1) = {at(b1,r1),at(b1,r2)}
and another ground set for {?b/b2} is c↓(?b/b2) =
{at(b2,r1),at(b2,r2)}.

An invariant candidate is called a lifted mutex group
if all of its ground atom sets are mutex groups, that
is, for any reachable state s and assignment {vf (c)/x},
|{a | s |= a, a∈ c↓(vf (c)/x)}|≤ 1. An LMG with no fixed
variable can only generate one ground mutex group.
For example, 〈∅,?r,{at robby(?r)}〉 only induces
ground atoms set {at robby(r1),at robby(r2)}.
Fišer [2020] provides a method to identify the set of LMGs
for a PDDL task. Since an LMG with multiple atoms can be
split into multiple LMGs with a single atom each, for simplic-
ity, in this paper we assume each LMG has only one atom.

3 Label Reduction
A planning task can be represented as a labeled transition
system, where labels are operations that can be executed in
states. These transition labels are identified by the head(o)
for ground actions. For example, pick(b1,r1,g1) is a
label for the action that picks the ball b1 from room r1 in
the gripper g1. A label set L consists of a unique label for
each ground action in O↓. The label set size increases expo-
nentially in the number of objects. This work aims to reduce
the size of the label set L. We do so by identifying an as-
signment of labels to planning actions such that it generates a
smaller label set L′ while producing an equivalent transition
system. We capture this requirement by specifying the crite-
ria for a valid label reduction. A label reduction is valid if
it assigns distinct labels to any two ground actions that can
be applied in the same reachable state. For example, actions
pick(b1,r1,g1) and pick(b2,r2,g1) cannot be ap-
plied in the same state as the gripper g1 cannot be in two
different rooms in the same state. Thus, assigning the same
label to both would be valid. But pick(b1,r1,g1) and
pick(b2,r1,g2) can be applied in the same state, and
hence cannot be assigned the same label.

Definition 1. A label reduction function ψ : L 7→ L′ is
valid if any two distinct ground action labels
head(o1), head(o2) ∈ L that are applicable in the same
reachable state (s |= pre(o1) ∧ s |= pre(o2)) are assigned
distinct labels, that is ψ(head(o1)) 6= ψ(head(o2)).

This definition ensures that any two actions that are appli-
cable in the same state are distinguishable. For each reduced
label, the set of corresponding actions must include at most
one applicable action for each reachable state. Noticing the
resemblance to predicate mutex groups, we call such action
sets applicable action mutex groups.

Definition 2. A set of ground actions O′ is an applicable
action mutex group (AAMG) if for any reachable state s,
|{o | s |= pre(o), o ∈ O′}| ≤ 1.

Naturally, any subset of an AAMG is also an AAMG, and
any set of actions of size 1 is an AAMG. A partitioning of
actions into AAMGs defines a valid label reduction, and vice
versa, a valid label reduction defines a partitioning of actions
into AAMGs. While one can seek to find the smallest possi-
ble valid label reduction, that might require generating the set
of all ground actions. To avoid the tedious grounding process,
we focus on finding AAMGs for lifted actions.

We find AAMGs for each lifted action separately, by
reducing its parameters. For example, consider a lifted
action o = pick(?b,?r,?g), as a robot can only be in
one specific room in any state, only one specific assignment
to ?r is satisfiable in any state. So one possible set of
AAMGs can be obtained by defining partial grounding
of action o on the subset of parameters obtained after
removing ?r. That is o↓({?b/b,?g/g}) | ∀b, g ∈
B} = {{pick(b1,r1,g1),pick(b1,r2,g1)},
{pick(b1,r1,g2),pick(b1,r2,g2)}, ...}.

A partial grounding of parameter subset (X ⊆ params(o))
of a lifted action o induces sets of ground actions where each
set corresponds to a particular assignment of objects to pa-
rameter subset X . Thus, we want to identify a subset of
parameters (X) such that any assignment (c) to this subset
results in the ground action set (o↓(X/c)) being an AAMG
(like the subset {?b,?g} in the above example). Note that
LMGs have a similar property. Any assignment to their fixed
variables results in a ground atom set being a mutex group.
Next, we show how LMGs can be used to identify the re-
quired parameter subset.

Theorem 1. Given a lifted action o and a lifted mutex group
l = 〈vf (l), vc(l), {α}〉, if p v α for some p ∈ pre(o), then
any assignment c to X = params(o) \ vc(l) 1 results in
o↓(X/c) being an AAMG.

Proof. Given an assignment vf (l)/c, any state s can only sat-
isfy at most one of the ground atoms from the mutex group
l↓(v

f/c) (from the definition of LMG). Consequently, as
p ∈ pre(o) and p v α, the state can satisfy at most one
of the preconditions of the ground actions in the set o↓(X/c).
Hence, o↓(X/c) is an AAMG.

We call an LMG l relevant to a lifted action if an atom p
in the precondition satisfies p v α, where α ∈ A(l). The
parameters from set vc(l) of a relevant LMG need not be in-
cluded inX . Given the assignment to vf (l) ⊆ params(o) the
LMG l guarantees a unique assignment to parameters vc(l).
Once the assignment to these parameters (vf (l) ∪ vc(l) ⊆
params(o)) are identified, another LMG l′ could now be used
to identify the assignment to parameters vc(l′) and hence
vc(l′) can also be removed fromX . Essentially, we can lever-
age multiple LMGs to further reduce the subset X . Formally,
this corresponds to the following problem, which we call pa-
rameter seed set:

1We assume that the variables of the LMG l match the ones of
the precondition atom p.

Input: A lifted action o with parameters params(o) and a
set of relevant lifted mutex groups L.
Find: A subset X ⊆ params(o) of parameters s.t.
∃X1, . . . Xk with (i)X=X1⊆X2⊆ . . .⊆Xk=params(o),
and (ii) Xi+1 =Xi∪vc(l) for some l∈L s.t. vf (l)⊆Xi.

Any assignment of objects to the parameter seed setX will
result in a unique assignment to all the remaining parameters
of o for any reachable state.

Theorem 2. Let o be a lifted action over parameters
params(o) and X be a solution to the parameter seed set
problem above. Any assignment c of objects to X results in
o↓(X/c) being an AAMG.

Proof. Let X1 ⊆ X2 ⊆ . . . ⊆ Xk = params(o) and let
l1, . . . , lk−1 be lifted mutex groups such that vf (li) ∈ Xi

and Xi+1 = Xi ∪ vc(li). Then, each Xi is a solution
to the parameter seed set problem. We prove the claim by
induction over the number of lifted mutex groups starting
from k. The base claim of o↓(Xk/x) (one lifted mutex
group) is AAMG results from Theorem 1. We assume that
o↓(Xi+1/ĉ) is an AAMG for any assignment ĉ to Xi+1 and
prove that o↓(Xi/c̃) is an AAMG for any assignment c̃ to
Xi. Since li = 〈vf (li), v

c(li),A(li)〉 is a lifted mutex group
with vf (li) ⊆ Xi, we have that li↓(Xi/c̃) is a mutex group.
Let o1, o2 be two ground actions in o↓(Xi/c̃). If both o1
and o2 belong to o↓(Xi+1/ĉ), we are done. Otherwise, as-
sume o1 in o↓(Xi+1/c1) and o2 in o↓(Xi+1/c2), where c1
and c2 agree on Xi but differ on Xi+1 \Xi. However, since
Xi+1 =Xi ∪ vc(li), we have Xi+1 \Xi ⊆ vc(li), making c1
and c2 mutually exclusive. Thus, o↓(Xi/c̃) is an AAMG.

Different parameter seed sets X correspond to different
AAMGs. To find the smallest possible label set L′, we want
to minimize the number of AAMGs and therefore we are
looking for a seed set X with a minimum possible total num-
ber of assignments. This can be expressed as

argmin
X

∏
x∈X
|D(x)|.

As the objective is not linear, we can use an equivalent one
instead: argmin

X

∑
x∈X log(|D(x)|).

The parameter seed set problem is NP-Complete. For the
lack of space, the proof, by reducing the bounded parame-
ter seed set decision problem to a seed set decision prob-
lem [Gefen and Brafman, 2011], is deferred to the supple-
mentary material. To solve the parameter seed set problem,
we cast it as a (delete-free) STRIPS planning task with op-
eration costs. We first find a set L of relevant LMGs. Then,
for each lifted action o we define a separate planning task
Πo = 〈Lo,Oo, Io, Go〉, where

• Language Lo contains a single predicate mark and an
object for each parameter in params(o).

• The set Oo consists of two types of actions

1. seedx actions are defined for each pa-
rameter x ∈ params(o) as seedx :=〈
seedx, log(|D(x)|), ∅, {mark(x)}, ∅

〉

2. getl actions are defined for each relevant LMG
l as getl :=

〈
getl, 0, {mark(x) |x ∈

vf (l)}, {mark(y) | y∈vc(l)}, ∅
〉
.

• Initial state Io = ∅
• Goal state Go = {mark(x) | ∀x ∈ params(o)}.

The action seedx marks parameter x ∈ params(o) as an el-
ement of the seed set. Action getl indicates that a unique
assignment for the parameters x ∈ vc(l) can be identified if
all parameters y ∈ vf (l) are known. Therefore, the param-
eters vc(l) can be reduced. A plan for Πo corresponds to a
sequence of seed and getl actions. The parameters marked
by seed actions form the seed set, while others are reduced.

Theorem 3. For a plan π of Πo, Xπ = {c | seedc ∈ π}, is a
solution to the parameter seed set problem of o.

Proof. Let π be a plan for Πo (assume there are no redun-
dant repetitions of actions in π). Since seed actions have
no preconditions, assume these actions come before getl ac-
tions, and let π = πsπg denote the partition of π into the
two sequences of seed and getl actions, respectively. Let
s1 be the state resulting from applying πs in the initial state
Io and s1, . . . , sk be the sequence of states along πg ap-
plied to s1. Then, we have (i) s1 ⊆ s2 ⊆ . . . ⊆ sk
and sk = {mark(x) | x ∈ params(o)}, as well as (ii)
si+1 = si ∪ add(getl) = si ∪ {mark(y) | y ∈ vc(l)} for
some getl with pre(getl) = {mark(x) |x ∈ vf (l)} ⊆ si.
Denoting the parameters of o marked in the state s by Γ(s) =
{x | mark(x) ∈ s}, we get that Xπ = Γ(s1).

The cost of a plan π is
∑

seedx∈π log(|D(x)|), and there-
fore a cost-optimal plan will correspond to a parameter seed
set with a minimal possible total number of assignments. To
summarize, we find a parameter seed-set X for each lifted
action such that assigning objects to X will result in a set of
ground actions that is an AAMG. Hence, all the ground ac-
tions in that set can be assigned the same label. This reduces
the size of the label set L.

4 Experiments
Our experimental evaluation is split into three parts. First, we
check whether our approach is able to reduce the size of the
transition label set and whether the reduction is substantial.
The next two parts evaluate the utility of our approach. We
test whether our reduction can translate into improved per-
formance in two use cases: learning reinforcement learning
policies and lifted successor generation.

Reduction in the label sets
We compare the size of label sets, obtained with and without
the proposed reduction, on a representative set of 14 STRIPS
domains from various IPC (using the typed versions where
available) and 10 hard-to-ground (HTG) domains. We use
the Fast Downward [Helmert, 2006] planning system trans-
lator to ground the lifted actions. To infer the lifted mutex
groups, we use the implementation by Fišer [2020] and to
solve the parameter seed set planning task we use the Fast
Downward planner with A* search. The parameter seed set

101 102 103 104 105 106
101

102

103

104

105

106

??????
∗

∗

∗

∗
∗

∗

∗
∗

∗

∗
∗

∗∗∗∗

∗

∗

∗

∗

∗
∗

∗
∗∗

∗

∗

∗
∗

∗

∗

∗

∗

∗

∗
∗

∗

���

�

�

���

���

�

�

��

��

~

~~

~

~

~~

~

~~~~~~~

~

~~~~

?????
?

??
??????????
?

?

?????????????

?
?????????????????

?

???

??

?
???

??
??????????
???

Size of label set L

Si
ze

of
re

du
ce

d
la

be
ls

et
L

′
blocks gripper logistics visitall

? barman pipesworld rovers depot
driverlog tpp ∗ satellite � zenotravel
~ thoughtful ? freecell

102 105 108 1011 1014 1017

102

106

1010

1014

� ����
����� ����
������ ��

���

�
�
����

�
�
���

��
�
�

�

�
�
�
�

�
�

�
�

�
����

�
�
����

�
�
��

�
�

?

??

?

?

?

?

??

?

Size of label set L

Si
ze

of
re

du
ce

d
la

be
ls

et
L

′

visitall rovers
blocksworld childsnack
�GED ? logistics

pipesworld

(a) (b)

Figure 2: Comparison of label set sizes on (a) 14 IPC STRIPS domains and (b) 7 HTG domains.

Domain # reduced non-seed parameters
actions max % (#) mean % (#)

IPC domains

blocks 3/4 100.0% (1.00) 50.00% (0.75)
barman 11/12 66.67% (3.00) 41.94% (1.92)
driverlog 6/6 66.67% (2.00) 47.22% (1.50)
thoughtful 20/21 100.0% (6.00) 73.03% (3.24)
gripper 3/3 66.67% (2.00) 50.00% (1.33)
pipesworld 6/6 74.57% (6.12) 65.69% (5.26)
pipesworld (no t.) 6/6 71.43% (5.00) 59.81% (3.87)
pipesworld (no s.) 4/4 68.89% (7.60) 65.83% (6.88)
tpp 4/4 69.52% (4.87) 60.48% (3.90)
freecell 10/10 80.00% (5.00) 65.29% (3.30)
logistics 6/6 66.67% (2.00) 55.95% (1.76)
rovers 8.62/9 77.08% (2.88) 46.50% (1.73)
satellite 5/5 68.52% (2.08) 51.99% (1.46)
visitall 1/1 50.00% (1.00) 50.00% (1.00)
depot 5/5 50.00% (2.00) 46.67% (1.80)
zenotravel 5/5 77.50% (4.10) 62.23% (2.68)

HTG Domains

visitall-3dim 3/3 75.00% (3.00) 75.00% (3.00)
visitall-4dim 4/4 80.00% (4.00) 80.00% (4.00)
visitall-5dim 5/5 83.33% (5.00) 83.33% (5.00)
blocksworld 3/4 100.0% (1.00) 50.00% (0.75)
GED 11/14 100.0% (3.00) 61.90% (1.50)
GED-split 19/21 100.0% (2.00) 73.81% (1.38)
GED-positional 0/3 0.00% (0.00) 0.00% (0.00)
pipesworld (no s.) 4/4 68.00% (7.26) 64.10% (6.68)
rovers 0/9 0.00% (0.00) 0.00% (0.00)
childsnack parsize1 2.5/4 63.33% (3.17) 27.29% (1.17)
childsnack parsize2 3/4 77.78% (4.67) 36.11% (1.92)
childsnack parsize3 3/4 80.95% (5.67) 37.95% (2.42)
childsnack parsize4 3/4 83.33% (6.67) 39.17% (2.92)
logistics 6/6 83.33% (2.50) 65.97% (2.08)
OS-MIT 15.22/52 44.41% (4.39) 7.91% (0.81)
OS-alkene 12/12 67.36% (7.11) 37.28% (3.81)
OS-original 14.85/52 45.74% (4.65) 7.14% (0.76)

Table 1: Summary of actions reduced by our approach. Column 2
shows the number of reduced/total lifted actions. Columns 3 & 4
present the maximum & mean of the percent (number) of reducible
parameters per action, aggregated over problems in that domain.

planning problem described in the previous section uses real-
valued costs for the seed actions. However, the Fast Down-
ward planner only allows integer costs. So we scale the real-
valued costs of the seed action in our experiments.

Figure 2 compares the size of the label sets L′ and L, ob-
tained with and without the reduction resp. Figure 2a presents
the reduction on each PDDL problem instance for IPC do-
mains and Figure 2b on 7 out of 10 HTG domains (the re-
maining 3 are available in the supplementary material). Both
axes are log-scale. Points below the diagonal indicate in-
stances where the reduced label set is smaller than the origi-
nal one. The distance from the diagonal indicates the signifi-
cance of the reduction. Gray dashed lines below the diagonal
represent the order of magnitude of the reduction. Our ex-
perimental results show a substantial reduction of the label
set in most problem instances, going up to 2 orders of mag-
nitude on IPC problems and up to 10 orders of magnitude on
hard-to-ground domains.

Table 1 summarizes the number of lifted actions that were
reduced by our approach. It also presents the mean and max
number of non-seed parameters found in the lifted actions,
i.e., |params(o)| − |X|. Each row of the table represents
a domain, aggregating results over the instances of that do-
main. We were able to find non-seed parameters in all 14
IPC domains and all but 2 HTG domains. More than 3 pa-
rameters were reduced for some lifted actions in thoughtful,
pipesworld, tpp, freecell, zenotravel, visit all, childsnack, and
OS-alkene domains. 2 IPC domains and 3 HTG domains have
actions with 100% reduction, that is all the parameters of
some actions were deemed inessential. Note that the number
of reduced parameters (in Table 1) is not necessarily propor-
tional to the reduction in the label set (in Figure 2). Never-
theless, the number of reduced parameters indicates the im-
portance of parameter reduction. The computation time was
between 0.25 and 1.73 seconds for the IPC domains and be-
tween 0.26 and 4.69 seconds for the HTG domains.

Learning RL policies
An MDPM = 〈S,A, P,R〉 contains a set of states S, a set
of actions A, a transition probability distribution P : S ×
S × A 7→ [0, 1], and a reward function R : S 7→ R. When

0 1 2 3 4 5

0

0.2

0.4

0.6

0.8

1

Steps in Environment (×105)

A
ve

ra
ge

R
ew

ar
d

Action space
All
Reduced

0 1 2 3 4 5

0

0.2

0.4

0.6

0.8

1

Steps in Environment (×105)

Action space
All
Reduced

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

Steps in Environment (×105)

Action space
All
Reduced

0 1 2 3 4 5

0

0.2

0.4

0.6

0.8

1

Steps in Environment (×105)

Action space
All
Reduced

(a) (b) (c) (d)

Figure 3: Learning curve in the (a) ferry, (b) gripper, (c) blocks, and (d) logistics; with and without action label reduction.

0 20 40 60 80 100 120
0

20

40

60

80

100

120

���
�

�
�

�

�
�

�

��

��

�

�

�

�
����?
?

?

?

?
?

?

?

?

?

? ?
?

?

?

?

?

?

?

?

?

?

?

?

?

?
?

?

?

?

?

?

?

?

??

?

?

?

?

?

?
?

??

?

?

?

????

??

?

?

?
?

?
?

?

?

?

?
?

Table size in Powerlifted

Ta
bl

e
si

ze
in

Po
w

er
lif

te
d

w
/s

ee
ds

visitall
pipesworld
�GED

OS-alkene
? OS-MIT

0 · 100 1 · 103 2 · 103 3 · 103 4 · 103
0 · 100

1 · 103

2 · 103

3 · 103

4 · 103

?

?

?

?

?

?

?

?

?

? ???

?

? ?? ?

?

??

?

??? ?

?

???

?

?? ?

?
?

?

?
?

?

?

??

?
?

?

~~~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~~~~~~~~
~
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Table size in Powerlifted

Ta
bl

e
si

ze
in

Po
w

er
lif

te
d

w
/s

ee
ds

blocksworld
childsnack

? logistics
~OS-original

(a) (b)

Figure 4: Comparison of table sizes before the query is performed. We split HTG domains into two plots for readability.

a PDDL task Π is cast as an MDP M, the set of states S
are defined as the set of all states reachable from I of Π, the
action set A is defined as the set of labels that is composed of
a unique label for each of the ground actions, the probability
distribution P is defined to respect the state-transition in the
PDDL actions, and the reward function R is defined as some
positive integer when s |= G and 0 otherwise. In practice,
for each of the ground actions, the head of the ground action
head(o) is assigned as the unique label.

To evaluate the advantage of reducing the label set size in
planning as RL, we cast the PDDL task as an MDP with two
different action spaces: 1) All: default action space with all
ground actions, with head(o) as unique labels, 2) Reduced:
reduced action space with one label for each AAMG and
compare the learning curves of RL policies. We focus on
4 classical planning domains, ferry, gripper, blocks, and lo-
gistics. Since our aim is to evaluate the advantage of reduc-
ing the action space, and not the generalization of policies,
we fix the number of objects in each domain. We generate
500 unique pairs of initial and goal states in each domain.
Of these, 250 pairs were used in training and the remaining
were set aside for evaluation. Inspired by the work of Gehring
et al. [2022], we use domain-independent planning heuristic,
hFF, as a dense reward function and use their code to con-
vert the PDDL problem to an RL environment. We employ
the Double DQN implementation from the ACME RL library
[Hoffman et al., 2020] to learn a state-action value function

and apply a greedy policy π(s) = max
a

Q(s, a) in our evalu-
ation.

Figure 3 shows learning curves aggregated over 5 runs with
different random seeds. For ferry and gripper domains (Fig-
ure 3 a and b), the reduction of action labels improves sample
efficiency by as many as 300, 000 steps. In blocks and logis-
tics domains (Figure 3 c and d), the baseline without the label
reduction was not able to learn a policy. With a reduced label
set, the training becomes feasible. It is clear from these plots
that reducing the action label sets yields significant gains in
terms of sample efficiency. One possible reason that explains
these results is the reduction of invalid actions achieved in
these environments. As our approach reduces the action la-
bels while maintaining all the valid actions, the number of
invalid actions is reduced. This phenomenon of deep RL
agents showing performance improvement upon reduction
of invalid actions is studied in Huang and Ontañón [2022].
Well aware of this phenomenon, researchers invest signifi-
cant effort to manually identify small action spaces in plan-
ning domains [Silver and Chitnis, 2020; Fern et al., 2006;
Dzeroski et al., 2001] and code state-dependent action func-
tions in RL [Boutilier et al., 2018; Huang and Ontañón, 2022;
Bamford and Ovalle, 2021]. We automated this manual pro-
cess for planning domains. Our results show that even in
small-scale problems (with 4–7 objects) label reduction is
beneficial. In large problems (with many objects) our ap-
proach can provide tremendous leverage for training RL al-

gorithms, reducing label set by orders of magnitude.

Lifted successor generation
While planning tasks are often represented in PDDL, using
first-order representations, most planners use a propositional
or a multi-valued grounded representation [Bäckström and
Nebel, 1995]. The lifted successor generator by Corrêa et
al. [2020] works directly on a lifted level to generate suc-
cessor states using database techniques [Ullman, 1989]. A
state is represented as a database. Each predicate has a ta-
ble with the number of columns according to the predicate
arity. Each fact in the state forms a row in the table. With
this state representation, the task of identifying the applica-
ble actions is equivalent to a join query evaluation. Con-
sider a planning task Π = 〈L,O, I, G〉 over a first-order lan-
guage L = 〈B, T ,V,P〉. A state s is a database D(s) =
〈B, {RP,s|P ∈ P}〉 with objects B as domain and finite set
of relations over these objects. The relation RP,s contains all
ground atoms of predicate P in state s as tuples. The set of
ground actions applicable in s for a lifted action o ∈ O is
identified by the conjunctive query
Q(params(o)) :− RP1,s, · · · , RPn,s where Pi ∈ pre(o).

The query result provides tuples of object assignments to the
action parameters, which define the ground actions that are
applicable in the state.

There are several possible ways of exploiting the additional
information of the seed parameters for speeding up join com-
putation. The complexity of the query evaluation is measured
in terms of the input and output size of the query. With our
seed parameter set, the input and the output of the query can
be modified and improvement can be achieved in computa-
tion time. To modify the output, one can query only for the
seed parameters and derive the assignments for non-seed pa-
rameters using the sequence of lifted mutex groups.

In our preliminary experiment, we modify the procedure of
Powerlifted planner [Corrêa et al., 2020] by pre-processing
the tables, hence modifying the input size. Before querying,
we join the precondition tables with the corresponding lifted
mutex group table, over non-seed parameters. This allows us
to reduce the size of the tables in the query. Figure 4 shows
the difference in the size of the tables before the query is per-
formed. The X-axis presents the size of the table in Power-
lifted and the Y-axis presents the size of the table in Power-
lifted with seeds. So, a point below the diagonal indicates
reduced sizes. There are 4914, out of 36097 tables, that un-
dergo size reduction, and often a significant one. In 478 out of
811 problems where the join is performed, at least one table is
reduced in size. As known from database literature, reducing
the size of the tables can help improve join performance [Ull-
man, 1989]. Our initial results (in supplementary material),
comparing the time taken to perform the join and to generate
applicable actions show that our approach has the potential
to save computational cost. Note that we do not modify the
existing query evaluation process. Optimizing the join query
using the cardinality of the relations can potentially further
improve the processing time. However, query optimization
is out of the scope of the current work. Further research is
needed into additional variants of improving the lifted suc-
cessor generation to make it beneficial in other domains.

5 Related Work
Various approaches have been studied in RL to reduce the
action space. Stochastic action sets [Boutilier et al., 2018]
and invalid action masking [Huang and Ontañón, 2022;
Bamford and Ovalle, 2021; Kanervisto et al., 2020] restricts
the action selected by an agent to a small subset of actions
that are feasible in the given state. This is done by assign-
ing zero probability (or −∞ score) to invalid actions. While
the stochastic action sets and invalid action masking define a
state-dependent subset of feasible actions, our action reduc-
tion is independent of the current state.

Another approach to manage a large number of actions
in an MDP is by using factored action spaces [Pazis and
Lagoudakis, 2011; Geißer et al., 2020; Guestrin et al.,
2002]. With factored action space, an action is decom-
posed into multiple components and represented as either
a decision tree or a vector. It is straightforward to con-
vert predicate action space (for example, gripper actions
{drop(b1, r2, g1), pick(b2, r1, g2), . . .}) to
a factored action space (a0, a1, . . . , an) with a0 denoting
the action identifier (for example, drop or pick) and
a1, . . . , an, denoting the parameters. Our approach of identi-
fying the parameter seed set can be used to reduce the number
of factors in the factored action spaces.

In planning literature, label reduction techniques are used
to reduce the number of transition labels in an abstract tran-
sition graph [Helmert et al., 2014; Sievers et al., 2014], with
the aim to simplify the transition system by creating an equiv-
alence between labeled transitions. Here, the purpose is dif-
ferent: labels of actions that are never applicable together are
reduced to the same label while allowing to differentiate be-
tween applicable actions in a given state.

6 Discussion and Future Work
In this work, we have introduced definitions of a valid la-
bel reduction and applicable action mutex groups and have
shown the connection between the two. We have presented a
method for automatically deriving action label reductions for
planning tasks based on action parameter reduction. For that,
a parameter seed set problem was introduced, and a solution
to the problem was suggested by translating it to delete-free
planning. Our experimental evaluation shows a significant re-
duction in action labels when using our approach, across all
tested planning domains. This reduction translates both into
improved sample efficiency of standard RL agents and into
reduced computation time of identifying applicable ground
actions in lifted planning, the two example use cases.

Our method, however, does not guarantee the optimality
of the valid reduction size, even for the restricted case con-
sidered in this work. Finding provably minimal size reduc-
tions is an interesting topic for future research. Further, we
barely touched on the possible benefits of action parame-
ter reduction for classical planning. We have not explored
other methods of speeding up successor computation. Fi-
nally, exploring the possible benefits of the action parameter
reduction for lifted heuristic computation [Corrêa et al., 2021;
Lauer et al., 2021] is of great promise for lifted planning.

References
[Bäckström and Nebel, 1995] Christer Bäckström and Bern-

hard Nebel. Complexity results for SAS+ planning. Com-
put. Intell., 11(4):625–655, 1995.

[Bamford and Ovalle, 2021] Christopher Bamford and Al-
varo Ovalle. Generalising discrete action spaces with con-
ditional action trees. In 2021 IEEE Conference on Games
(CoG), pages 1–8, 2021.

[Boutilier et al., 2018] Craig Boutilier, Alon Cohen,
Avinatan Hassidim, Yishay Mansour, Ofer Meshi, Martin
Mladenov, and Dale Schuurmans. Planning and learning
with stochastic action sets. In IJCAI, pages 4674–4682,
2018.

[Corrêa et al., 2020] Augusto B. Corrêa, Florian Pommeren-
ing, Malte Helmert, and Guillem Francès. Lifted succes-
sor generation using query optimization techniques. In
ICAPS, pages 80–89, 2020.

[Corrêa et al., 2021] Augusto B. Corrêa, Guillem Francès,
Florian Pommerening, and Malte Helmert. Delete-
relaxation heuristics for lifted classical planning. In
ICAPS, pages 94–102, 2021.

[Dzeroski et al., 2001] Saso Dzeroski, Luc De Raedt, and
Kurt Driessens. Relational reinforcement learning. ML,
43(1/2):7–52, 2001.

[Fern et al., 2006] Alan Fern, Sung Wook Yoon, and Robert
Givan. Approximate policy iteration with a policy lan-
guage bias: Solving relational markov decision processes.
JAIR, 25:75–118, 2006.

[Fišer, 2020] Daniel Fišer. Lifted fact-alternating mutex
groups and pruned grounding of classical planning prob-
lems. In AAAI, pages 9835–9842, 2020.

[Gefen and Brafman, 2011] Avitan Gefen and Ronen I. Braf-
man. The minimal seed set problem. In ICAPS, number 1,
pages 319–322, 2011.

[Gehring et al., 2022] Clement Gehring, Masataro Asai, Ro-
han Chitnis, Tom Silver, Leslie Pack Kaelbling, Shirin
Sohrabi, and Michael Katz. Reinforcement learning for
classical planning: Viewing heuristics as dense reward
generators. In ICAPS, pages 588–596, 2022.

[Geißer et al., 2020] Florian Geißer, David Speck, and
Thomas Keller. Trial-based heuristic tree search for mdps
with factored action spaces. In SOCS, pages 38–47, 2020.

[Guestrin et al., 2002] Carlos Guestrin, Michail G.
Lagoudakis, and Ronald Parr. Coordinated reinforcement
learning. In ICML, pages 227–234, 2002.

[Haslum, 2011] Patrik Haslum. Computing genome edit dis-
tances using domain-independent planning. In Scheduling
and Planning Applications woRKshop (SPARK) at ICAPS,
pages 45–51, 2011.

[Helmert et al., 2014] Malte Helmert, Patrik Haslum, Jörg
Hoffmann, and Raz Nissim. Merge-and-shrink abstrac-
tion: A method for generating lower bounds in factored
state spaces. Journal of the ACM, 61(3):16:1–63, 2014.

[Helmert, 2006] Malte Helmert. The Fast Downward plan-
ning system. JAIR, 26:191–246, 2006.

[Helmert, 2009] Malte Helmert. Concise finite-domain rep-
resentations for PDDL planning tasks. Artificial Intelli-
gence, 173:503–535, 2009.

[Hoffman et al., 2020] Matt Hoffman, Bobak Shahriari,
John Aslanides, Gabriel Barth-Maron, et al. Acme: A re-
search framework for distributed reinforcement learning.
CoRR, abs/2006.00979, 2020.

[Huang and Ontañón, 2022] Shengyi Huang and Santiago
Ontañón. A closer look at invalid action masking in pol-
icy gradient algorithms. In The Thirty Fifth International
Florida Artificial Intelligence Research Society FLAIRS,
2022.

[Kanervisto et al., 2020] Anssi Kanervisto, Christian
Scheller, and Ville Hautamäki. Action space shaping in
deep reinforcement learning. In 2020 IEEE Conference
on Games (CoG), pages 479–486, 2020.

[Lauer et al., 2021] Pascal Lauer, Álvaro Torralba, Daniel
Fis̆er, Daniel Höller, Julia Wichlacz, and Jörg Hoffmann.
Polynomial-time in PDDL input size: Making the delete
relaxation feasible for lifted planning. In IJCAI, pages
4119–4126, 2021.

[Matloob and Soutchanski, 2016] Rami Matloob and
Mikhail Soutchanski. Exploring organic synthesis with
state-of-the-art planning techniques. In Scheduling and
Planning Applications woRKshop (SPARK) at ICAPS,
pages 52–61, 2016.

[McDermott, 2000] Drew V. McDermott. The 1998 AI plan-
ning systems competition. AI Mag., 21(2):35–55, 2000.

[Nelson, 2021] Mark J. Nelson. Estimates for the branching
factors of atari games. In 2021 IEEE Conference on Games
(CoG), pages 1–5, 2021.

[Pazis and Lagoudakis, 2011] Jason Pazis and Michail G.
Lagoudakis. Reinforcement learning in multidimensional
continuous action spaces. In IEEE Symposium on Adap-
tive Dynamic Programming And Reinforcement, pages 97–
104, 2011.

[Sievers et al., 2014] Silvan Sievers, Martin Wehrle, and
Malte Helmert. Generalized label reduction for merge-
and-shrink heuristics. In AAAI, pages 2358–2366, 2014.

[Silver and Chitnis, 2020] Tom Silver and Rohan Chitnis.
Pddlgym: Gym environments from PDDL problems.
CoRR, abs/2002.06432, 2020.

[Ullman, 1989] Jeffrey D. Ullman. Principles of Database
and Knowledge-Base Systems, Volume II. Computer Sci-
ence Press, 1989.

	Introduction
	Preliminaries
	PDDL task
	Lifted Mutex Groups

	Label Reduction
	Experiments
	Reduction in the label sets
	Learning RL policies
	Lifted successor generation

	Related Work
	Discussion and Future Work

