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Abstract

In this paper, we study the problem of answering
questions of type “Could X cause Y? ” where X
and Y are general phrases without any constraints.
Answering such questions will assist with various
decision analysis tasks such as verifying and ex-
tending presumed causal associations used for de-
cision making. Our goal is to analyze the abil-
ity of an AI agent built using state-of-the-art un-
supervised methods in answering causal questions
derived from collections of cause-effect pairs from
human experts. We focus only on unsupervised and
weakly supervised methods due to the difficulty of
creating a large enough training set with a reason-
able quality and coverage. The methods we exam-
ine rely on a large corpus of text derived from news
articles, and include methods ranging from large-
scale application of classic NLP techniques and sta-
tistical analysis to the use of neural network based
phrase embeddings and state-of-the-art neural lan-
guage models.

1 Introduction
Despite recent advancements in various areas of artificial in-
telligence and machine learning, it is still a common view that
machines do not match human knowledge that is often es-
sential for complex analysis and decision making tasks. For
instance, when humans are tasked with answering questions
regarding future sociopolitical and economic events, Tetlock
and Gardner [2015] claim that “...a few hundred ordinary peo-
ple and some simple math can not only compete with profes-
sionals supported by a multibillion-dollar apparatus but also
beat them”. A key part of answering such questions lies in not
only gaining knowledge about current conditions and events,
but also understanding “causal” relations between events and
conditions. That is, knowing that an event or condition X has
happened, is it likely that event or condition Y will follow? In
other words, we need the ability to answer questions of type
“Could X cause Y ?.” We refer to these questions as binary
causal questions.

Causal discovery is widely studied in artificial intelligence
[Pearl, 2009] and growingly recognized as highly desirable

for practical AI systems. While defining and identifying “ac-
tual” causality remains a topic of great interest [Halpern,
2016], we focus on a basic problem that humans can easily
tackle. Our goal is to understand whether a causal relation
could exist, regardless of whether it holds true in a particular
scenario. For example, it should be clear to a human that “ex-
plosion” can cause “fire inside a factory building” or “several
injuries”, while “several injuries” is not a reasonable cause
for “explosion”. Our focus is on such binary causal questions
that humans could answer either from prior knowledge or by
searching through a source of knowledge (e.g., reading a book
or performing a Web search), combined with some basic rea-
soning. While answering such questions could have a num-
ber of applications in various domains, our primary target ap-
plication is risk management and situation awareness, where
the “causal” knowledge can help analysts and decision mak-
ers better understand the impact of past and current events
and conditions on relevant outcomes [Sohrabi et al., 2018;
Sohrabi et al., 2019]. A key requirement in this application
is the ability to support causes (Xs) and effects (Y s) that are
general phrases, without any constraints.

The main contributions of this paper are as follows: 1) a
set of novel benchmark data sets of cause-effect pairs from
real-world risk management and decision analysis applica-
tions (Section 3) 2) a set of unsupervised methods of answer-
ing binary causal questions that do not impose any constraints
on cause and effect phrases (Section 4) 3) Detailed experi-
mental evaluation of the methods along with an analysis of
strengths and shortcomings of each approach (Section 5).

2 Related Work
Our work is related to a number of active research areas in
natural language processing, knowledge management, and
data mining. Given our research focus, we only mention
closely related work in terms of methods used and/or the ap-
plication. To the best of our knowledge, no prior work has
directly addressed the problem of answering binary causal
questions of the form “Could X cause Y ?” where X and
Y do not necessarily subscribe to any semantic constraints.

In terms of the end application and the source of knowl-
edge, our work is most related to that of Radinsky et al.
[2012]. The Pundit algorithm in this work predicts the pos-
sible future effects of an “event” that has occurred. Here
an event is defined as a set of concepts with semantic types



such as Action, Actor, Object, Instrument, and Location. For
example, an event derived from the news article title “The
U.S Army destroyed a warehouse in Iraq with explosives,
which occurred on October 2004” is represented as: Destroy
(Action); U.S Army (Actor); warehouse (Object); explosives
(Instrument); Iraq (Location); October 2004 (Time). While
this is a powerful event representation for our target appli-
cation, the approach is limited to when proper concepts can
be extracted and more importantly can be matched to con-
cepts in an existing knowledge base. For example, the algo-
rithm can predict “Tsunami-warning will be issued in the Pa-
cific Ocean” given an event “Magnitude 6.5 earthquake rocks
the Solomon Islands”, based on causal statements the sys-
tem is trained on such as “Tsunami warning issued for Indian
Ocean after 7.6 earthquake strikes island near India”. This
is done based on mapping extracted concepts to an existing
knowledge base that contains knowledge about islands and
their nearest ocean. Follow-up work [Radinsky and Horvitz,
2013] describes an approach capable of generating general-
purpose predictions, relying on “storylines” (collections of
related news stories) instead of causal statements, but simi-
larly uses a mapping to existing knowledge bases.

There is a rich literature on extraction of causal relations
from text. To our knowledge, all previous work in this area
falls under one or both of the following two categories: 1)
requires extensive training data; 2) semantically restricts X
and Y , in most cases by defining them as events with a strict
representation that requires the use of NLP techniques for ef-
fective extraction of events.

An example of research that relies on extensive training
data is a body of work by a group based in Japan who have ap-
plied supervised learning techniques using a benchmark train-
ing data set with over 100K human-annotated cause-effect
pairs in Japanese [Hashimoto et al., 2014; Kruengkrai et al.,
2017]. This relies heavily on a significant amount of labeled
data and only considers events that involve a predicate with
a single argument noun, such as “exacerbate desertification”
(translation to English). A recent approach that can perform
general causal extraction but also requires training data used
annotations involving around 5,000 sentences by three anno-
tators [Dasgupta et al., 2018].

The work of Do et al. [2011] is an example of a minimally
supervised approach, but puts restrictions on X and Y . Here
an event is defined as p(a1, a2, . . . , an), where p is the word
that triggers the presence of event in text (e.g., verbs such as
“attacked” or nouns such as “explosion”), and a1, a2, . . . , an
are the associated arguments (e.g., subject and object nouns
for “attacked” event). As we will illustrate in the next section
using examples from the cause-effect pairs from human ex-
perts, such definitions do not always support our target appli-
cation. Another recent example of causal extraction over re-
stricted event types involves commonsense reasoning, where
X and Y are events involving agents, e.g. “PersonX wanted
to be nice” could be a cause for “PersonX pays PersonY a
compliment” [Sap et al., 2019]. [Asghar, 2016], Sec. 5 of
[Radinsky et al., 2012] and Sec. 2 of [Dasgupta et al., 2018]
provide good reviews of causal relation extraction techniques.

We note that much of the early work on causal extraction
from text uses lexical co-occurrence as a proxy or at least sup-

porting evidence for causal relationships. [Church and Hank,
1990] is a classic paper in this domain that proposed the
use of pointwise mutual information (PMI) for word associa-
tion in text, computed by identifying co-occurrence of words
in a corpus. Since then, mutual information and its varia-
tions have been widely used to measure causality between
phrases or fragments of text [Chambers and Jurafsky, 2008;
Riaz and Girju, 2010; Gordon et al., 2011; Do et al., 2011;
Luo et al., 2016].

Another popular approach to causal extraction uses dis-
course cues, i.e. lexical patterns in the form of ‘A led to
B’, ‘if A then B’, etc., which provide semantic knowledge
about how phrases relate to each other [Khoo et al., 2000;
Girju, 2003; Radinsky et al., 2012]. For instance, in the sen-
tence ‘the police arrested him because he killed someone’,
the connective ‘because’ evokes a contingency relation be-
tween the adjacent text spans ‘The police arrested him’ and
‘he killed someone’. It is common for causal extraction tech-
niques to combine notions of co-occurrence together with dis-
course cues [Do et al., 2011; Luo et al., 2016].

In theory, it is also possible to apply a question answer-
ing solution to address our problem of answering binary
causal questions. In practice, however, such an approach
would need a high-quality corpus of text and training data,
which could be too hard to collect for a generic and scal-
able solution. We consider such a solution out of scope for
this paper but a potential avenue for future research. We
note that some work on causal relation extraction has been
framed as causal question answering solutions [Girju, 2003;
Sharp et al., 2016].

3 Cause-Effect Pairs Benchmark Data Sets
In this section, we describe a group of benchmark data sets
of cause-effect pairs. Note that we do not use these data sets
as training sets. Our causal extraction methods rely solely
on a large corpus of text (news articles) that is used as an
external source, i.e., it has not been used in any way in cre-
ation of the cause-effect pairs data sets. Apart from the first
collection which we include for the sake of comparison with
state of the art methods, the other three collections have not
been used in the past and target our primary use case in risk
management. We have made these data sets publicly avail-
able [Hassanzadeh et al., 2019].

SemEval. We use the same data set used by Sharp et al.
[2016] for the sake of comparison with state of the art meth-
ods and pointing out some of the shortcomings of prior meth-
ods. The data set is derived from the SemEval 2010 Task
8 [Hendrickx et al., 2010], originally a classification of se-
mantic relations between nominals (words). Creating the col-
lection involved a relatively complex annotation procedure
involving humans following a set of guidelines to annotate
around 1,200 sentences manually collected through pattern-
based Web searches. The collection of cause-effect pairs cre-
ated from this collection consists of 1,730 word pairs, out
of which 865 (half) are from the cause-effect relations in the
original data and so marked as causal, and the rest are a ran-
dom subset of non-causal relations in the original data. Table
1 shows several examples of cause-effect pairs found in the



causal non_causal
word1 word2
disease blindness
vaccine fever
death relocation
earthquake avalanche
protests revolution
flight crisis
explosion damage
officers suffering

word1 word2
method mathematician
message fiancee
aliens space
horses stable
blade saw
review paper
activities programmes
report panel

Table 1: Examples from the SemEval collection

Cause Effect
Rising regional tensions Increased defence spending
Climate Change New opportunities
Fractured and/or polarized societies Instability and civil war
Ageing population and Youth bulges Straining resources 
Public discontent/disaffection and 
polarization

Lack of trust in governments and institutions 

Globalization of financial resources Lack of visibility on transactions supporting 
criminal and terrorist activities

Table 2: Examples from the NATO-SFA collection

collection. As these examples show, most pairs can turn into
questions that are relatively easy to answer by humans (e.g.,
“Could vaccine cause fever?”), while some can be more chal-
lenging with no context (e.g., “Could flight cause crisis”?).

NATO-SFA. Strategic Foresight Analysis (SFA) 2017 Re-
port is a publication of NATO (the North Atlantic Treaty
Organization) that “examines the main trends of global
change and the resultant defence and security implications
for NATO” [NATO-SFA, 2017]. This report is a result of a
deep understanding of various trends and conditions through-
out the world by a large number of human experts involved
either directly in producing this report or indirectly by per-
forming studies, meetings, and reviews, as acknowledged un-
der “Sources and Acknowledgments” section of the report.
The Appendix of the document contains a summary table of
20 “Trends” and 59 “Implications”. We use the title text of
each trend as a cause and the text of the implication (a word or
a phrase) as the effect. We use the text as-is, with only slight
modifications of a few effects/implications as in some cases
the text repeated the cause/trend. Examples of the cause-
effect pairs are shown in Table 2. Since there are no nega-
tive (non-causal) relations in the document, we use the set of
unique cause or effect phrases to create an equal number of
random pairs that do not appear in the table (i.e., there is no
stated causal relationship between them) and mark them as
non-causal. We note that while lack of a causal relation be-
tween randomly chosen cause and effect phrases in the non-
causal portion is not guaranteed, the chances of having such
a pair is very low.

Risk Models. As another source of causal knowledge by
human experts, we take advantage of models designed by ex-
pert analysts for setting up a decision support system at a
large organization [Sohrabi et al., 2019]. The experts have
created these models using a so-called “mind-mapping soft-
ware” [Wikipedia, 2019]. The models can be seen as graphs
where nodes are short descriptions of conditions or events
(e.g. “High Inflation Rate” or “Increase in Corruption”) and

Cause Effect
currency appreciation against US dollar low inflation 
decreased local protectionism decreased tariffs on foreign firms
decreasing government and political 
stability

decrease in government spending 
(infrastructure, education, public benefits) 

increase in corruption unfair allocation of government budget 
rising unemployment rates growing social tension
weakening economic environment rising unemployment rates

Table 3: Examples from the Risk Models collection

Cause Effect
wealth inequalities social fissures
OPEC's agreement to raise production quota Low oil prices 
Expansionary fiscal policy increased government spending 
social programs higher quality of life 
improvement in global demand boost commodity exports
reduction of the broad money supply inflation

Table 4: Examples from the CE Pairs collection

edges imply a causal relation. These models are in part based
on the experts’ domain knowledge in enterprise risk manage-
ment, and in part based on studying review literature and re-
ports. We create a collection of cause-effect pairs by turning
each edge in the graph to a pair with the label of the nodes
as the phrase for cause and effect. The result is a set of 368
causal pairs with 223 unique cause/effect phrases. As in the
NATO-SFA data, we extend the data with 368 randomly cho-
sen (and so most likely non-causal) pairs and mark them as
non-causal. Table 3 shows examples of these pairs.

CE Pairs. As another collection of cause-effect pairs tar-
geting our primary use case in risk management, we manually
extracted a set of cause-effect pairs where either cause or ef-
fect is related to one of the node labels in the above risk mod-
els, but the phrase comes from an external source. For this,
we asked each of 7 people take 30 unique node labels from
the Risk Models, and for each label, find sentences (from on-
line news or other documents) that state a causal relationship
between the node label (or its paraphrase) and another con-
cept/phrase. For example, for a node label “increased tariffs
on foreign firms”, the cause could be “higher tariffs” with
the effect being “lower consumer consumption” which is de-
rived from this text found through Web search on the Investo-
pedia website (investopedia.com): “The effect of tariffs and
trade barriers on businesses, consumers and the government
shifts over time. In the short run, higher prices for goods can
reduce consumption by individual consumers and by busi-
nesses.” Our goal in creating this new collection is twofold:
1) expanding the set of cause and effect phrases beyond the
limited number of original node labels 2) extracting phrases
that are used within one or a small number of sentences writ-
ten by humans and so turn into more natural “Could X cause
Y?” questions. Table 4 shows examples from this collection,
that currently consists of 160 causal and 160 non-causal pairs.

4 Question Answering Methods
Following the approach of Radinsky et al. [2012], and with
the same motivation, the methods we consider in this paper
rely on a large collection of text. We seek generic methods ca-
pable of handling causes and effects that are general phrases,

investopedia.com


without any restriction on the type of the phrase (e.g., repre-
senting an event with certain arguments) or the ability to map
the phrase to an existing source of knowledge or dictionary.
All the methods we consider in this paper are unsupervised,
i.e., they do not require an existing collection of cause-effect
pairs for training. Instead, our methods use the knowledge
extracted from a large external text corpus to assign scores
to the input questions (or cause-effect pair). The scores can
be used along with a threshold to provide a binary Yes/No
answer for a given question, but also can be used as a confi-
dence measure for a given answer. A primary feature of these
methods is that the answers can be explained using the exter-
nal corpus, e.g. by providing example similar causal relations
from the external corpus. This explainability feature is often
a requirement in risk management applications.

While our approach can work on any large corpus of text,
we used a corpus of around 180 million titles and snip-
pets of news articles covering around three years of news.
Clearly, a larger corpus can result in larger number of ex-
tracted cause-effect pairs but will also result in higher noise
and increased scalability requirements for the methods. A
smaller but higher quality source such as the New York Times
corpus used by Radinsky et al. [2012] can result in less noise
but also more limited representation of causes and effects. As
some of the examples from our cause-effect pairs data sets
show, the language used to express a particular causal rela-
tion can be very complex, and there could be numerous ways
for humans to express the same relation. As a result, regard-
less of the size of the input corpus, an explicit mention of the
cause-effect pairs may never be found in the corpus especially
when no restrictions are imposed on cause/effect phrases.

4.1 Co-occurrence Based Methods
Since temporal co-occurrence methods are prevalent in the
literature on causal extraction from text, we use a couple of
these approaches as baselines.

Method 1 (PMI)
As mentioned earlier, the point-wise mutual information
(PMI) between occurrences of words in a corpus has been
particularly popular. For any pair of words x and y, we com-
pute PMI = log p(y,x)

p(x)p(y) , where p(x) and p(y) are the prob-
abilities that x and y will be observed at least once in a docu-
ment in the corpus, respectively, and p(x, y) is the probability
that the words co-occur in the same sentence at least once in
a document in the corpus. To generalize this notion to a pair
of text spans X,Y , we first use a phrase extractor to process
the spans into bags of phrases, and then compute the average
PMI between all possible combinations of cause-effect phrase
pairs. We refer to this average as the PMI score for X,Y . We
use the PMI score along with a threshold value to provide a
Yes/No answer to the input question.

Method 2 (CEA)
The second temporal co-occurrence baseline is denoted CEA
(cause-effect association) and is based on the measure pro-
posed in Do et al. [2011]. It is a modification of the PMI
that multiplies other factors, such as the joint inverse docu-
ment frequency to penalize phrases that occur frequently, as

well as measures for how phrases co-occur relative to other
causes and effects. Hashimoto et al. [2014] used a similar
co-occurrence measure as a baseline in their work. We refer
the reader to Do et al. [2011] for details about the CEA score.
We use the CEA score along with a threshold value to return
a Yes/No answer to the input question.

4.2 Discourse Cue Based Methods
Our second class of methods is based on extraction of cause-
effect pairs explicitly mentioned in sentences in the corpus.
The extraction process consists of the following steps:

1. Filtering sentences with explicit causal verbs. For this,
we use a dictionary of verbs derived from [Girju and
Moldovan, 2002] list of causal verbs with low ambiguity
(cf. Table 1 in [Girju and Moldovan, 2002]).

2. Extraction of causal mentions following the approach
of Sharp et al. [2016], i.e., turning each sentence into
one or more ordered (X,Y ) pair(s) where X and Y are
phrases.

3. Indexing the extracted cause-effect pairs using a stan-
dard information retrieval engine, supporting substring
and keyword searches.

Method 3 (DCC)
The simplest method of using the above index to answer a
“Could X cause Y ?” question is to do a search for (X,Y )
and provide the number of hits (count) as the score and the
hits as evidence/explanation for the answer. When X and/or
Y contain more than one phrase, we first perform a phrase
extraction and then perform a boolean OR search for all the
phrase combinations.

C-score. We use an additional score which we refer to as
the c-score, calculated by counting the number of hits for
(X,Y ) divided by the number of hits for (Y,X). This score is
based on the intuition that the majority of causal relations are
directional, i.e., when X is highly likely to cause Y , then in
general it is unlikely for Y to cause X as well. As an example,
our index returns 212 hits for (explosion, injuries) and
37 hits for (injuries, explosion)1 and so the c-score is
5.73. A score larger than 1.0 is very likely a causal relation,
while a score much lower than 1.0 shows lack of a causal rela-
tion or inability to provide a confident answer to the question.

Our first method which we refer to as DCC, uses both
count and c-score along with two threshold values to
provide a Yes/No answer to the input question.

Method 4 (DCC-embed)
A basic problem with the DCC method is its inability to cap-
ture various ways X and Y can be represented in natural
language. As an example, a question with cause-effect pair
(High Inflation,Interest Rate Hike) can be an-
swered based on a pair like (Increased Consumer
Price Index,Higher Borrowing Costs) although
the phrases have no lexical similarity. Unlike previous work

1These hits are a result of noise in our causal extraction method.
For example, “workers injured in Sunday’s explosion has died as a
result of injuries” results in a hit for (injuries, explosion).



Synonyms / Variations Phrases capturing the same “concept”
phrase score
the_inflation_rate 0.896
an_inflation_rate 0.794
annual_inflation_rate 0.792
annual_inflation 0.771
inflation 0.767
headline_inflation 0.757
inflation_rates 0.751
…
core_inflation .727
…
overall_inflation 0.719
…
percent_inflation_rat 0.716
…
retail_inflation 0.680

phrase score
consumer_price_index 0.750
consumer_prices 0.745
the_consumer_price_index 0.742
the_consumer_prices_index 0.716
…
gdp_deflator 0.708
…
gross_domestic_product 0.702
consumer_price_growth 0.695
consumer_prices_index 0.694
the_consumer-price_index 0.693
the_wholesale_price_index 0.688
overall_consumer_prices 0.687
overall_prices 0.680
core_consumer_prices 0.678

Figure 1: Similarity query results for inflation rate

that relies on dictionaries and ontologies to perform se-
mantic mapping, we build neural network based semantic
embeddings of phrases using our external corpus to effec-
tively capture semantic relatedness across phrases. Figure
1 shows the results of a nearest neighbor query for phrase
Inflation Rate, and how top-k query results could con-
tain synonyms/variations as well as related concepts. Our
phrase embeddings are trained over the full corpus (not just
the causal sentences) using a modified version of the classic
word2vec [Mikolov et al., 2013] approach with skip-gram ar-
chitecture where sentences are first turned into a collection
of phrases, and the context for each phrase is all the other
phrases in the same sentence. We believe our custom phrase
embeddings better address our goal of discovering related
phrases in the same corpus, although we have not performed a
comparison with other methods including those that use pre-
built models on another corpus.

Using the embeddings, our DCC-embed method extends
X and Y with k phrases using a top-k nearest neighbor search
query, and performs a Boolean OR query over the index for
all the possible combinations. The method then uses count
(the number of hits for the query) and c-score (the ratio
of the number of hits for (X,Y ) over the number of hits for
(Y,X)) along with two threshold values to provide a Yes/No
answer to the input question.

4.3 Neural Language Model Based Method
Recently, there has been an increasing interest the use of the
so-called neural language models to improve various NLP
tasks. These language models are designed to capture sen-
tence structures much more effectively compared to classic
statistical language models [Bengio et al., 2003]. Classic
models even if trained on large amounts of text, are very
likely to face a sequence not seen in training data. As a com-
plementary approach to our DCC-embedmethod which aims
at capturing various representations of phrases, our goal is
to use a neural language model that can capture the seman-
tics of sentences involving both the cause and the effect. For
this, we use BERT (Bidirectional Encoder Representations
from Transformers) [Devlin et al., 2018] which unlike pre-
vious neural language models, “is designed to pre-train deep
bidirectional representations by jointly conditioning on both
left and right context in all layers” and is shown to improve
state of the art in eleven NLP tasks.

Method 5 (NLM-BERT)
Our method based on BERT also relies on extraction of causal
sentences using discourse cues as explained in the previous
section. However, instead of performing causal mention ex-
traction and using phrases for lookup, we encode each causal
sentence into a vector using BERT, and index all the vec-
tors for efficient nearest neighbor search queries. We then
compute two scores. Given a pair (X,Y ), we first per-
form a search for top k causal sentences most similar to
“X may cause Y” and compute the average cosine similar-
ity score returned by the search. We refer to this score as
bert-sim-score. For example, the average score for
top 10 hits for “Explosion may cause death” is 0.916. We
then perform a second search for the reverse relation, retriev-
ing top k causal sentences most similar to “Y may cause X”
and calculate the average cosine similarity scores. We divide
bert-sim-score by this average similarity score of the
reverse relation to compute our score for this method which
we refer to as the bert-c-score. For example, the av-
erage cosine similarity score for top 10 hits for “Death may
cause explosion” is 0.847, and so the bert-c-score is
0.916/0.847 = 1.081.

Our BERT-based method uses bert-sim-score and
bert-c-score along with two threshold values to provide
a Yes/No answer to the input question.

5 Experiments
Implementation Details. We omit a detailed report on run-
ning times due to space constraints, but note that a primary
requirement for all our methods has been scalability and
near real-time response at query time. The pre-processing of
our co-occurrence based solutions and the causal extraction
part of our discourse cue based methods are implemented on
Apache Spark, with jobs that take a few minutes to a few
hours on a cluster with 256 executors. We tried both spaCy2

and NLTK3 libraries for phrase extraction but found only a
simple extraction method based on regular expressions on
top of POS tagging of NLTK to scale well, i.e., finish pre-
processing within at most a few hours. Our corpus of over
180 million news article titles and snippets comes from Event
Registry [Leban et al., 2014]. We extracted over 320K causal
sentences from titles and 16.7 million causal sentences from
article snippets. For nearest neighbor search for DCC-embed
and NLM methods, we used gensim4 and faiss5 libraries.

We first report on overall accuracy measures across the four
data sets and various methods and then provide a deeper anal-
ysis of the results along with examples from each data set.

Accuracy Measures. Let tp be the number of true posi-
tives, fp the number of false positives, tn the number of true
negatives and fn the number of false negatives. We mea-
sure precision (pr = tp

tp+fp ), recall (re = tp
tp+fn ), accu-

racy (acc = tp+tn
tp+tn+fp+fn ), and F1 (f1 = 2∗pr∗re

pr+re ) for each
method, data sets, and varying threshold values.

2https://spacy.io/
3https://www.nltk.org/
4https://radimrehurek.com/gensim/
5https://github.com/facebookresearch/faiss

https://spacy.io/
https://www.nltk.org/
https://radimrehurek.com/gensim/
https://github.com/facebookresearch/faiss


data set method result thr1 thr2 tp fp pr re f1 acc
Max F1 - -∞ 865 865 0.500 1.000 0.666 0.500
Max Acc - -1.55 442 392 0.530 0.511 0.520 0.529
Max F1 - -∞ 865 865 0.500 1.000 0.666 0.500
Max Acc - -0.06 455 385 0.542 0.526 0.534 0.540
Max F1 0.00 1.10 589 228 0.721 0.681 0.700 0.709
Max Acc 0.00 1.90 516 135 0.793 0.597 0.681 0.720
Max F1 10.00 0.00 674 339 0.665 0.779 0.718 0.694
Max Acc 10.00 1.60 501 97 0.838 0.579 0.685 0.734
Max F1 0.82 0.62 863 855 0.502 0.998 0.668 0.505
Max Acc 0.90 0.63 513 307 0.626 0.593 0.609 0.619
Max F1 - -∞ 59 59 0.500 1.000 0.667 0.500
Max Acc - -1.84 23 11 0.676 0.390 0.495 0.602
Max F1 - -∞ 59 59 0.500 1.000 0.667 0.500
Max Acc - -0.06 13 7 0.650 0.220 0.329 0.551
Max F1 0.00 0.00 59 59 0.500 1.000 0.667 0.500
Max Acc 3.00 0.63 33 14 0.702 0.559 0.623 0.661
Max F1 0.00 0.00 59 59 0.500 1.000 0.667 0.500
Max Acc 8.00 0.90 29 9 0.763 0.492 0.598 0.669
Max F1 0.94 0.82 58 53 0.523 0.983 0.682 0.542
Max Acc 0.93 0.90 50 43 0.538 0.847 0.658 0.559
Max F1 - -∞ 368 368 0.500 1.000 0.667 0.500
Max Acc - -0.05 60 37 0.619 0.163 0.258 0.531
Max F1 - -∞ 368 368 0.500 1.000 0.667 0.500
Max Acc - -0.92 185 153 0.547 0.503 0.524 0.543
Max F1 0.00 0.00 368 368 0.500 1.000 0.667 0.500
Max Acc 0.00 1.60 47 41 0.534 0.128 0.206 0.508
Max F1 0.00 0.00 368 368 0.500 1.000 0.667 0.500
Max Acc 0.00 1.56 67 52 0.563 0.182 0.275 0.520
Max F1 0.00 0.90 345 318 0.520 0.938 0.669 0.537
Max Acc 0.00 1.00 226 184 0.551 0.614 0.581 0.557
Max F1 - -∞ 160 160 0.500 1.000 0.666 0.500
Max Acc - -0.10 7 4 0.636 0.044 0.082 0.509
Max F1 - -∞ 160 160 0.500 1.000 0.667 0.500
Max Acc - 2.55 36 23 0.610 0.225 0.329 0.541
Max F1 0.00 0.00 160 160 0.500 1.000 0.667 0.500
Max Acc 2.00 1.38 54 35 0.607 0.338 0.434 0.559
Max F1 0.00 0.00 160 160 0.500 1.000 0.667 0.500
Max Acc 2.00 1.20 66 42 0.611 0.413 0.493 0.575
Max F1 0.91 0.65 160 157 0.505 1.000 0.671 0.509
Max Acc 0.96 1.02 44 24 0.647 0.275 0.386 0.563

CE 
Pairs

PMI

CEA

DCC

DCC-
embed
NLM-
BERT

Risk 
Models

PMI

CEA

DCC

DCC-
embed
NLM-
BERT

NATO-
SFA

PMI

CEA

DCC

DCC-
embed
NLM-
BERT

SemEval

PMI

CEA

DCC

DCC-
embed
NLM-
BERT

Table 5: Accuracy results

Results. Table 5 shows the overall accuracy results, report-
ing the maximum accuracy and F1 scores each method can
achieve on each of the data sets along with the score thresh-
old(s) used for the result achieved. To better understand what
the accuracy numbers mean in practice, we also report the
number of questions answered positively correctly (tp) and
incorrectly (fp). A higher precision is a desired feature in
use cases where a large number of phrases (e.g., events and
conditions) of interest are known in advance and the system
is queried with all the possible pairs to find a causal rela-
tion among the given phrases. Since the number of causal
relations is usually a small fraction of all the possible pairs,
lower precision will result in an unacceptably large number
of false positive pairs. Also, given the nature of our methods
which rely on a large corpus of text that may or may not be
able to support answering a question, negative answers can
be viewed as inability to answer a question if the method has
a high precision.

On SemEval data, the DCC-embed method achieves the
highest accuracy and F1 scores, outperforming state of the art
results reported by Sharp et al. [2016]. While the best per-
forming method by Sharp et al. referred to as cCNN method
which is based on a “Causal Convolutional Neural Network
Model” achieves a precision of under 60% at recall levels
over 70%, DCC-embed achieves a precision of 66.5% at a
recall of 77.9%, which yields a 71.8% F1 score. Figure 2
of Sharp et al. [2016] shows that all the methods they con-

sidered achieve a precision of over 70% only at recall levels
under 45% whereas DCC and DCC-embed methods achieve
this precision at over 70% recall (PR curve omitted due to
space constraints).

The results over the other data sets show a different over-
all story. While DCC-embed outperforms the other methods
in terms of maximum accuracy in the NATO-SFA and CE
Pairs data sets as well, the margin comparing with baselines
is much smaller. The NLM-BERT method performs better
than the other methods in terms of F1 score in NATO-SFA
and CE Pairs data and in both accuracy and F1 score in the
Risk Models data, again with a relatively small margin. Over-
all, we observe that some methods completely fail at distin-
guishing between causal and non-causal pairs in the question,
while other methods do well only on a small number of the
input questions

One surprising result is the poor performance of the
NLM-BERT method on SemEval. Upon manual inspection
of the results, we observe two limitations of this method:
1) The method fails at understanding “unusual” sentences -
those that are not likely to be written by humans. For exam-
ple, the pair (eyelids, blinking) from SemEval pairs turns
into a query sentence eyelids may cause blinking
which even if grammatically correct, is not a statement a hu-
man would make. 2) The value of bert-sim-score on
its own is meaningless and is only useful for ranking. For
example, the average score for highly similar sentences re-
trieved for a given query can be the same or even lower than
the average score for another query with sentences retrieved
that have little similarity to the query.

Choice of Threshold Value. We note that while we mea-
sured the maximum accuracy scores with varying threshold
values for the score(s) of each method, in practice the choice
of the right threshold value may not be clear, and may require
supervision. However, our DCC and DCC-embed methods
have the additional advantage that given the intuition behind
the c-score value, a threshold value of around 1.0 results
in accuracy scores close to the maximum value in all cases.

6 Conclusion & Future Work
Our primary goal in this paper was to show the ability of an
AI engine that uses state-of-the-art methods of large-scale
knowledge extraction from text, to answer general binary
causal questions of the form “Could X cause Y ?”. Although
our results are promising and show in part the power of the
implemented methods, the achieved accuracy is still far from
the level of human intelligence and what human experts can
achieve. Our methods however show the promise of being
able to provide assistance to human experts, e.g., by pruning
a large number of potential causal pairs. We intend to use the
outcome of this work as a part of the IBM Scenario Planning
Advisor [Sohrabi et al., 2019] to enable the users to prune
a large space of potential pairs, and provide hints for each
question posed to the user. We have made our benchmark
data sets publicly available [Hassanzadeh et al., 2019] and
will continue to extend and refine them. We hope that these
data sets will promote further research on causal knowledge
extraction and binary causal question answering methods.
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Pascal Vincent, and Christian Janvin. A neural proba-
bilistic language model. Journal of Machine Learning Re-
search, 3:1137–1155, 2003.

[Chambers and Jurafsky, 2008] N. Chambers and D. Juraf-
sky. Unsupervised learning of narrative event chains. In
ACL, 2008.

[Church and Hank, 1990] K. W. Church and P. Hank. Word
association norms, mutual information, and lexicography.
Computational Linguistics, 16(1):22–29, 1990.

[Dasgupta et al., 2018] Tirthankar Dasgupta, Rupsa Saha,
Lipika Dey, and Abir Naskar. Automatic extraction of
causal relations from text using linguistically informed
deep neural networks. In SIGDIAL, 2018.

[Devlin et al., 2018] Jacob Devlin, Ming-Wei Chang, Ken-
ton Lee, and Kristina Toutanova. BERT: pre-training of
deep bidirectional transformers for language understand-
ing. CoRR, abs/1810.04805, 2018.

[Do et al., 2011] Quang Do, Yee Seng Chan, and Dan Roth.
Minimally supervised event causality identification. In
EMNLP, 2011.

[Girju and Moldovan, 2002] Roxana Girju and Dan I.
Moldovan. Text mining for causal relations. In FLAIRS,
2002.

[Girju, 2003] Roxana Girju. Automatic detection of causal
relations for question answering. In MultiSumQA, 2003.

[Gordon et al., 2011] A. S. Gordon, C. A. Bejan, and
K. Sagae. Commonsense causal reasoning using millions
of personal stories. In AAAI, 2011.

[Halpern, 2016] Joseph Y. Halpern. Actual Causality. The
MIT Press, 2016.

[Hashimoto et al., 2014] C. Hashimoto, K. Torisawa,
J. Kloetzer, M. Sano, I. Varga, J.-H. Oh, and Y. Ki-
dawara. Toward future scenario generation: Extracting
event causality exploiting semantic relation, context, and
association features. In ACL, 2014.

[Hassanzadeh et al., 2019] Oktie Hassanzadeh, De-
barun Bhattacharjya, Mark Feblowitz, Kavitha Srini-
vas, Michael Perrone, Shirin Sohrabi, and Michael
Katz. Data sets of cause-effect pairs, May 2019.
https://doi.org/10.5281/zenodo.3214925.

[Hendrickx et al., 2010] Iris Hendrickx, Su Nam Kim, Zor-
nitsa Kozareva, Preslav Nakov, Diarmuid Ó. Séaghdha,
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