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Abstract

While Machine Learning has achieved considerable success
in recent years, this success crucially relies on human experts
to select appropriate features, workflows, algorithms with
their hyper-parameters, etc. Automating the role of the human
expert has seen some attention from the Machine Learning
community, with a dedicated workshop running since 2014 at
one of the top Machine Learning conferences. In this work,
we propose to exploit multiple AI Planning tools for automat-
ing the human expert, generating Machine Learning pipelines
automatically. We start from a knowledge about possible
valid pipelines encoded as Context-Free Grammar, translate
the problem of generating the corresponding language into
Hierarchical Task Network (HTN) Planning model, further
translate the HTN Planning model into a classical planning
model. We use existing planners to produce multiple plans
for the classical planning task, translate these plans into Ma-
chine Learning pipelines, train and evaluate these pipelines.
Based on pipelines’ accuracy feedback we update the clas-
sical planning model to improve the quality of pipelines ob-
tained in next iterations. Using planning tools allows us to
exploit the flexibility of model update instead of solution
modification. We present an application that helps users to
focus pipelines’ exploration process by allowing to encode
additional constraints on desired pipelines. Our experimental
evaluation shows the feasibility of using planning techniques
in this context.

Introduction
There is no doubt that the field of Machine Learning has
achieved considerable successes in recent years. This suc-
cess, however, crucially relies on human Machine Learning
experts, that spend countless hours on selecting appropriate
features, workflows, algorithms with their hyper-parameters,
etc. Automating the role of the human expert is thus ex-
tremely beneficial and has received considerable attention
from the Machine Learning community. There is a dedi-
cated workshop, AutoML, running since 2014 at one of the
top Machine Learning conferences (Hutter et al. 2014). As
Machine Learning methods (or operators) often come with
configuration parameters or hyper-parameters such as the
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depth of the tree for decision trees or regularization penalty
for linear models or number of layers and activation func-
tions for neural networks, finding the best configuration has
been the initial focus of the research in the area (Shahriari
et al. 2016). While hyper-parameter optimization is a hard
problem in general, for a small number of hyper-parameters,
grid search often suffices to produce good predictive per-
formance. In other cases, sequential model-based optimiza-
tion, e. g. Gaussian Process Regression (Snoek, Larochelle,
and Adams. 2012) or Random Forests (Hutter, Hoos, and
Leyton-Brown 2011) has been widely used.

When additionally considering the problem of choosing
complete Machine Learning pipelines, selecting a good per-
forming configuration becomes even harder. Focusing on
four data preparation steps: data cleaning → preprocessing
→ transformation → feature selection, the combined algo-
rithm selection and hyper-parameter optimization (CASH)
problem (Thornton et al. 2012; Feurer et al. 2015) selects the
Machine Learning methods for each of these pipeline steps
and the corresponding hyper-parameters of these methods
for a pipeline of fixed shape (fixed number of pipeline steps,
fixed data-flow graph, see Figure 1a), effectively limiting the
number of possible pipelines.

In an attempt to go beyond the small bounded number of
pipelines, Mohr, Wever, and Hüllermeier (2018) suggest us-
ing Hierarchical Task Network (HTN) Planning for generat-
ing valid pipelines. However, the paper develops a domain-
specific planner for the produced HTN task and the de-
scription of the HTN model is incomplete/missing. Further,
the model is limited to chain-shaped data-flow graphs (Fig-
ure 1a). Other work suggests a Reinforcement Learning ap-
proach, applying Monte Carlo Tree Search to explore the
space of possible (not necessarily valid) pipelines (Rako-
toarison, Schoenauer, and Sebag 2019; Drori et al. 2018).
The follow-up work, suggests additionally using grammar
for implicitly defining the space of possible valid pipelines
(Drori et al. 2019). Although the work explores a regular
grammar, limited again to chain-shaped data-flow graphs,
it is not clear what is the reason for such a restriction. Re-
inforcement Learning requires a large amount of available
data, as well as means of specifying the reward function for
strings that consist of both terminal and non-terminal sym-
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Figure 1: Data-flow graph shapes, (a) chain and (b) DAG.

bols. It is not clear how the authors overcome these restric-
tions. Similarly, yet another work exploits Genetic Program-
ming to explore the space of (not necessarily valid) pipelines
with data-flow graphs of complex shapes (Olson and Moore
2016) and then additionally uses a Context-Free Grammar to
prune the many invalid pipelines generated by genetic mu-
tations and crossovers (de Sá et al. 2017). As in the previ-
ous work the use of grammar is also limited to chain-shaped
data-flow graphs.

In this work, we show how to exploit the power of AI
Planning to generate pipelines of complex Directed Acyclic
Graph (DAG) shapes. As Context-Free Grammars (CFG)
have been shown to be a convenient tool for modeling Ma-
chine Learning pipelines generation, we use CFG as our in-
put. There is a great deal of similarity between CFG and
HTN Planning, with the complexity of plan existence for
HTN Planning proved through reduction from the question
of whether the languages of two CFGs have a non-empty in-
tersection (Erol, Hendler, and Nau 1994). The planning tools
for HTN, however, are not as well developed as for classi-
cal planning. In particular, there are no tools that can obtain
multiple plans for HTN, similarly to top-k, top-quality, and
diverse planners in classical planning (Nguyen et al. 2012;
Katz et al. 2018; Katz, Sohrabi, and Udrea 2020). How-
ever, a restricted fragment of HTN Planning can be con-
verted into classical planning (Alford, Kuter, and Nau 2009;
Alford et al. 2016). Then, classical planning tools can be
used to derive multiple plans, that can then be translated all
the way back to strings in the grammar. Such translations to
classical planning allow us to perform a goal-oriented explo-
ration of strings in a grammar, a task of a particular interest
for Machine Learning pipelines generation. Further, the goal
of the classical planning model can be extended to include
user-specified constraints, focusing on specific elements that
the user is interested to obtain in her pipelines. Some of these
specified goals can be seen as soft goals, which is especially
useful if not all constraints can be satisfied simultaneously.
These soft goals extend the classical planning formalism, but
can be then compiled away (Keyder and Geffner 2009). An-
other benefit of classical planning translation is the ability
to modify the model through action costs modification, pre-
serving the solution space exactly, while modifying individ-
ual plans costs. This slight modification, effectively, allows
us to obtain different solutions when using cost-sensitive
techniques.

In this paper, we present an application that demonstrates
how the aforementioned techniques are exploited for help-

ing users to focus pipelines’ exploration process. Our exper-
imental data shows that we are able to generate structurally
complex pipelines. Further, we demonstrate how pipelines’
accuracy improves with each exploration. Note that while
our application receives Machine Learning grammar as an
input, our overall approach can work with any CFG and ap-
plied to other problems, such as natural language generation.
Further, to the best of our knowledge, the grammar we uti-
lize in this work is by far the most complex among those
explored for automating Machine Learning to this day. As
an additional contribution, we create a new classical plan-
ning domain and will make it openly available.

The rest of the paper is structured as follows. First, we
present the preliminaries, then we discuss Machine Learn-
ing pipelines and grammar in detail. Next, we describe our
solution and the user-guided exploration of the space of
pipelines, present our experimental evaluation, and conclude
with related work and discussion.

Preliminaries
While our application of interest in Automated Machine
Learning, our idea can be applied broadly to other appli-
cations and therefore we start by describing the problem of
exploring the space of strings for a Context-Free Grammar.

Following the notation of Segovia-Aguas, Jiménez, and
Jonsson (2017), we define a Context-Free Grammar (CFG)
as a tuple G = 〈V, v0,Σ, R〉 where V is the finite set of
non-terminal symbols, v0 ∈ V is the start non-terminal sym-
bol, Σ is the finite set of terminal symbols, and R = {α →
β | α ∈ V, β ∈ (V ∪ Σ)∗} is the finite set of production
rules in the grammar. The semantics of CFG is as follows:
each v ∈ V represents a sub-language of the language de-
fined by the grammar and Σ is the alphabet of the language
defined by G and can contain the empty string, which we
denote by ε ∈ Σ. By e0 we denote the string that con-
tains only the initial non-terminal symbol v0. For a string
e1 = u1αu2 ∈ (V ∪Σ)∗ and a rule r = α→ β ∈ R, we say
that e1 directly yields e2 = u1βu2, denoted by e1

r−→ e2. We
say that e1 yields en (denoted by e1 →∗ en) iff there exist
strings e1, . . . , en ∈ (V ∪ Σ)∗ and rules r1, . . . , rn−1 ∈ R,
such that for all 1 ≤ i < n we have ei

ri−→ ei+1. In such
cases, we say that r1 · . . . · rn−1 is an inducing sequence of
rules for the pair of strings 〈e1, en〉. The language of a CFG,
L(G) = {e ∈ Σ∗ : v0 →∗ e}, is the set of all strings that
contain only terminal symbols and that can be yielded from
the string e0. For a set of symbols c ⊆ V ∪Σ, in what follows
referred to as a constraint, we define a constrained language
Lc(G) as follows. For a string e we have e ∈ Lc(G) iff (i)
e contains all the terminal symbols in c, and (ii) there ex-
ists an inducing sequence of rules r1 · . . . · rn for the pair of
strings 〈e0, e〉 such that c ∩ V ⊆

⋃n
i=1{v | ri = v → α}. In

words, the constrained language consists of strings that can
be yielded from the string e0 through all constrained sym-
bols.

Definition 1 Given a CFG G and a constraint c, a con-
strained string existence is a problem of deciding whether
there exists a string s ∈ Lc(G).



〈start〉 → 〈dag〉>>〈est〉
〈dag〉 → NoOp()|〈est〉|〈tfm〉|〈dag〉>>〈dag〉
〈dag〉 → ((〈dag〉){ & (〈dag〉)}+) >>Concat()
〈est〉 → 〈glm〉|〈mlpc〉|〈dtc〉|〈ebm〉|〈gnb〉|〈knc〉|〈qda〉
〈glm〉 → LogisticRegression(solver=〈glmslv〉, penalty=〈glmpen〉)
〈glmpen〉 → ’l1’|’l2’
〈glmslv〉 → ’newton-cg’|’sag’|’saga’|’lbfgs’|’liblinear’
〈mlpc〉 → MLPClassifier(activation=〈mlpca〉, solver=〈mlpcs〉,

learning rate=〈mlpcl〉)
〈mlpca〉 → ’identity’|’relu’|’tanh’|’logistic’
〈mlpcs〉 → ’lbfgs’|’sgd’|’adam’
〈mlpcl〉 → ’constant’|’invscaling’|’adaptive’
〈dtc〉 → DecisionTreeClassifier(criterion=〈dtcc〉, splitter=〈dtcs〉)
〈dtcc〉 → ’gini’|’entropy’
〈dtcs〉 → ’best’|’random’
〈ebm〉 → 〈rfc〉|〈gbc〉|〈etc〉
〈rfc〉 → RandomForestClassifier(criterion=〈rfcc〉)
〈rfcc〉 → ’gini’|’entropy’
〈gbc〉 → GradientBoostingClassifier(loss=〈gbcl〉)
〈gbcl〉 → ’deviance’|’exponential’
〈etc〉 → ExtraTreesClassifier(criterion=〈rfcc〉)
〈gnb〉 → GaussianNB()
〈knc〉 → KNeighborsClassifier(weights=〈kncw〉, metric=〈kncm〉)
〈kncw〉 → ’uniform’|’distance’
〈kncm〉 → ’euclidean’|’manhattan’|’minkowski’
〈qda〉 → QuadraticDiscriminantAnalysis()
〈tfm〉 → 〈utfm〉|〈wtfm〉
〈utfm〉 → 〈urfnc〉|〈ucfnc〉
〈urfnc〉 → 〈rimp〉|〈scale〉
〈ucfnc〉 → (KeepNumbers & (KeepNonNumbers>>OneHotEncoder()))

>>Concat()
〈rimp〉 → SimpleImputer(strategy=〈rimps〉)
〈rimps〉 → ’mean’|’median’|’most frequent’
〈scale〉 → Normalizer()|MinMaxScaler()|RobustScaler()|StandardScaler()
〈wtfm〉 → 〈pca〉|〈nys〉
〈pca〉 → PCA(svd solver=〈pcas〉)
〈pcas〉 → ’auto’|’full’|’arpack’|’randomized’
〈nys〉 → Nystroem(kernel=〈nysk〉)
〈nysk〉 → ’rbf’|’cosine’|’poly’|’linear’|’laplacian’|’sigmoid’

Figure 2: Grammar rules fragment.

Definition 2 Given a CFG G and a constraint c, a con-
strained string generation is a problem of generating a
string s ∈ Lc(G).

For HTN Planning, we follow the notation of Alford et
al. (2016) and Bercher, Alford, and Höller (2019). An HTN
problem is a tuple P = (Xp, Xn,O,M, sI , tnI), where:

• Xp and Xn are a finite set of primitive and non-primitive
task names respectively,

• O is a set of HTN operators, where each o ∈ O is a triple
(n, χ, e), with n ∈ Xp being a primitive task name, χ the
precondition, and e the effect of the planning operator,

• M is a set of HTN methods, where each m ∈ M is a
triple (c, χ, tn), with c ∈ Xn being a non-primitive task
name, χ being the precondition of m, and tn being a task
network,

• sI is the initial state and tnI is the initial task network.

(a)

(b)

(c)

Figure 3: Visual depiction of grammar rules, (a)
〈dag〉>>〈est〉, (b) 〈dag〉 → 〈dag〉>>〈dag〉, and
(c) 〈dag〉 → ((〈dag〉){ & (〈dag〉)}+) >>Concat().

A task network is defined as a tuple tn = (T,≺, τ), where
T is a finite set of task instance symbols, ≺ is a partial order
over T , and τ : T 7→ (Xp ∪Xn) is a mapping from the task
instance symbols to task names.

The full semantics of HTN Planning is described in Al-
ford et al. (2016). A task network tnS is a solution to an
HTN problem P if and only if tnS can be obtained from the
initial task network tnI by a sequence of method or operator
applications (progression), does not contain non-primitive
tasks, and is executable (i.e., it contains a linearization of its
primitive tasks that is executable from the initial state sI ).

Machine Learning Pipelines & Grammar
We consider a CFG to define a search space that allows us to
not only search over ML operators but also over complex
pipeline shapes/structures. We define pipelines with com-
plex structures utilizing the following “combinators” in the
LALE python library (Hirzel et al. 2019)1:
• The � combinator performs the ‘pipe’ operation, where
α� β is a pipeline where the data goes into the α opera-
tor and the output of α is piped into the β operator.

• The & combinator performs parallel independent execu-
tions, where α & β is a (partial) pipeline with the opera-
tors α and β applied to the data independently in parallel.
The output of this (partial) pipeline could be piped (�)
into the LALE Concat operator to concatenate (or horizon-
tally stack) the features – the pipeline would be defined as
(α & β)� Concat.

• Note that in the above examples, the operators α, β can be
ML operators as well as themselves be (partial) pipelines.

AutoML Grammar
Equipped with LALE we can define a CFG for pipelines.
While our approach is not restricted to any particular gram-

1The ability to define complex pipelines is not unique to LALE.
However, LALE makes the definition of complex pipelines rela-
tively succinct, allowing us to consider a concise CFG with strings
in its language corresponding to executable LALE code.



Figure 4: Solution architecture

mar, Figure 2 provides an example CFG which encodes the
search space for both the shape of the data-flow graph of
the pipeline and the ML operators we wish to use in the
pipelines. Note that a pipeline that is valid under this CFG is
an executable LALE pipeline – the grammar directly gener-
ates executable code. To save space, the notation α→ β|γ is
used to denote two rules, α→ β and α→ γ. Further, {α}+
is used to denote at least one appearance of the (terminal or
non-terminal) symbol α, which can be encoded by an ad-
ditional rule. The non-terminal symbols are denoted by 〈α〉
and the terminal symbols are the other strings. For instance,
the right hand side of the rule

〈rfc〉 → RandomForestClassifier(criterion=〈rfcc〉)

has one non-terminal symbol 〈rfcc〉 and two terminal sym-
bols “RandomForestClassifier(criterion=” and “)”.

The first three production rules in Figure 2 encode the
shape of the pipelines. The first rule for the non-terminal
〈start〉 symbol indicates that the pipeline contains a data
flow graph (denoted by the non-terminal 〈dag〉) piped into a
ML modeling step (or estimator 〈est〉), depicted in Figure
3a. The production rule for 〈dag〉 allows it to be :

i. A NoOp implying the data is passed as is,
ii. a 〈est〉 which allows us to encode the practice of using

predictions from one ML modeling step as features for
downstream data processing and modeling,

iii. a 〈tfm〉 corresponding to ML data preprocessing and
transformation operators,

iv. an extension of the pipeline via the recursive 〈dag〉 �
〈dag〉 containing the LALE pipe combinator�, allow-
ing the pipeline to be of arbitrary length (Figure 3b),
and

v. another form of extending the pipeline data-flow
graph via the recursive ((〈dag〉){&(〈dag〉)}+) �
Concat() containing the LALE & combinator, allowing

the pipeline data-flow graph to contain parallel data-
processing paths followed by a concatenation of fea-
tures (Figure 3c).

The remaining production rules in Figure 2 provide the
different options for the non-terminal 〈est〉 corresponding
to the ML modeling operators and the non-terminal 〈tfm〉
corresponding to the ML transformation operators. The pro-
duction rules also demonstrate how we can handle categori-
cal (non-numeric) hyper-parameters within the CFG. For ex-
ample, 〈est〉 → 〈mlpc〉 and

〈mlpc〉 → MLPClassifier(activation=〈mlpca〉,solver=〈mlpcs〉,
learning rate=〈mlpcl〉)

specifies the neural network modeling operator
MLPClassifier from scikit-learn (Pedregosa et
al. 2011) along with its categorical hyper-parameters for the
neuron activation function 〈mlpca〉, optimization solver
〈mlpcs〉 and the learning rate schedule 〈mlpcl〉 for the
optimization solver, defined appropriately in the subsequent
production rules.

Given a CFG for ML pipelines, in the next section we de-
tail our proposed approach to automatically generating high
performing Machine Learning pipelines.

Constrained AutoML
While automation provides a lot of ease to the users, there
are many cases, where the user wishes to provide certain
constraints on outcome pipelines. Since the users specify the
input as a grammar, these constraints should also be speci-
fied in terms of the grammar. Fortunately, as we have seen
in the previous section, CFG makes it very easy for the user
to specify such constraints.

For example, the user can select specific non-terminal
or terminal symbols in the grammar – they can select the



Figure 5: Example of a CFG constraint chosen.

〈dtc〉 and 〈ebm〉 non-terminals to constrain the automated
pipeline configuration to a decision tree based ML model
for the modeling step or just select 〈ebm〉 if they prefer
only tree-based ML ensembles. As discussed in the next
section, the CFG makes it simple to specify multiple such
constraints, allowing the user to potentially incorporate any
domain knowledge or requirements. Furthermore, the CFG
itself can be modified in a manner that further facilitates the
constraint specification without changing the language de-
fined by the grammar. For example, we could modify the
following production rule

〈est〉 → 〈glm〉|〈mlpc〉|〈dtc〉|〈ebm〉|〈gnb〉|〈knc〉|〈qda〉

into a different organization as follows:

〈est〉 → 〈glm〉|〈mlpc〉|〈tree〉|〈others〉
〈tree〉 → 〈dtc〉|〈ebm〉

〈others〉 → 〈gnb〉|〈knc〉|〈qda〉.

This modified grammar makes it even easier for the user to
specify a constraint such as only choosing tree based meth-
ods by only selecting a single non-terminal 〈tree〉.

Solution Scheme
While there could be multiple possible ways of generat-
ing strings for (constrained) Context-Free Grammars, in this
work we chose to employ out-of-the-box planning tech-
niques. While Figure 4 shows the overall architecture, in
what follows, we describe the steps of our solution shown
in the figure in detail.

(I) Grammar → HTN translator. The (unconstrained)
Context-Free Grammar (the ‘Data Science BNF’ in-
put in Figure 4) is translated into an HTN Planning
model (Alford et al. 2016), as detailed below.

(II) HTN → PDDL. The HTN model is translated into
classical planning (Alford, Kuter, and Nau 2009).
We use the available off-the-shelf tool for STRIPS-
compatible translation for totally-ordered problems.
The algorithm requires to specify a parameter that

Figure 6: Pipeline visualization in LALE.

roughly corresponds to the non-tail recursion depth of
the HTN. We set that parameter to 20.

(III) PDDL updates: action costs, soft/hard goals. The
classical planning model is updated to incorporate the
constraints as hard goals. This is done by extending
the goal of the translated classical planning task with
atoms that correspond to the constraints (c.f. Figure
5). Further, we allow tweaking the planning model by
modifying the costs of individual actions. This forces
the quality aware planners to produce solutions differ-
ent from previously found ones.

(IV) PDDL planner. We exploit planners that produce mul-
tiple solutions (Katz et al. 2018; Katz, Sohrabi, and
Udrea 2020; Katz and Sohrabi 2020) to derive multi-
ple plans, translating these plans to strings in the con-
strained CFG. By using quality or diversity focused
planners we can somewhat control the exploration
through the space of strings in the constrained CFG.
Further, these constraints can be easily relaxed by
turning the corresponding hard goals into soft goals.
Such soft goals can be compiled away, producing
again a classical planning model (Keyder and Geffner
2009). In our implementation, we are using a top-k
planner (Katz et al. 2018).

(V) Plan → ML pipeline (LALE) translation. A set of
plans is translated into a set of Machine Learning
pipelines. In our implementation, we focus on LALE
pipelines (Hirzel et al. 2019). An example pipeline vi-
sualization in LALE is shown in Figure 6.

(VI) Optimizer. The pipelines are trained (with unspec-
ified hyper-parameters configured with an off-the-
shelf hyper-parameter optimizer such as HyperOpt or
SMAC) on the training data and their performance is
tested on heldout data. The example of such a train-
ing is shown in Figure 7. The accuracy of trained
pipelines is translated into a feedback on a quality of
the pipeline, expressed in action costs (see Figure 8).
The feedback is then used as an input to step III, to up-
date the classical planning model. The computation is
described in what follows.

In the rest of this section, we describe the translation of an
unconstrained CFG to HTN Planning model as well as the
action cost modification from the feedback.

Given a CFG G = (V, v0,Σ, R) as defined earlier,
we define the induced HTN Planning problem PG =
(Σ, V,O,M, sI , tnI) as follows.



• O = {(n, ∅, ∅) | n ∈ Σ} 2

• M={mr =(α, ∅, (Tr,≺r, τr)) |r=α→β∈R}, where
β = e1 · . . . · en,
Tr = {t1, . . . , tn},
ti ≺r tj iff i < j, and
τr(ti) = ei for 1 ≤ i ≤ n,

• sI = ∅, and
• tnI = ({tI}, ∅, τI), where τI(tI) = v0.

In words, we define an operator with empty precondi-
tion and effects for each terminal node in the grammar and
a method for each production rule. Note, multiple produc-
tion rules with the same left hand side symbols will result in
multiple methods for the same task. The initial task network
comprises of one task that represents the initial non-terminal
symbol in the grammar. It is worth noting that similar con-
structions have previously been suggested (Erol, Hendler,
and Nau 1996; Höller et al. 2014).
Theorem 1 For a Context-Free Grammar G, there is a bi-
jective mapping between its language L(G) and the set of
solutions to its induced HTN Planning problem PG .

Proof sketch: Let tnS = (T,≺, τ) be a solution to the
HTN problem PG . Then T = {t1, . . . , tn} consists of prim-
itive tasks only. Further, ≺ is a total order over T , w.l.o.g.,
t1 ·. . .·tn, since each method’s task network corresponds to a
total order over its tasks. Let e = τ(t1)·. . .·τ(tn) be the cor-
responding sequence of terminal symbols, ρ be the sequence
of method and operator applications that produced tnS , and
m1, . . . ,mk be the sub-sequence of ρ of methods. Then, ap-
plying the corresponding sequence of rules r1, . . . , rk to the
initial string e0 would result in e and therefore e ∈ L(G).

For the other direction, let e = e1 · . . . · en ∈ L(G).
Among the possible sequences of rules that yield e from e0,
let r1, . . . , rk be one such that at each step i the rule ri is
applied to the left-most non-terminal symbol. Then, a se-
quence of method and operator applications that produces a
solution to the HTN problem PG can be obtained by merg-
ing the sequences m1, . . . ,mk of methods and e1, . . . , en of
operators.

�

We now describe the cost allocation, as derived from the
feedback mechanism. Action costs are updated automati-
cally after each optimization round as follows. First, we
record all feedback from the optimizer from the beginning
of the process. The feedback takes the form of scores in
[0, 1] per pipeline, based on the optimized metric, be it ac-
curacy, area under the curve, or fairness, with higher scores
being better. Given all such scores for pipelines, we assign
each action an integer cost between 1 and highest possible
action cost (100 in our current implementation), inversely
proportional to the average score of the pipelines in which it
appears. Actions that have not yet appeared in any pipeline
receive a default score (30 in our implementation).

2It is possible to introduce a predicate for each operator, de-
scribing whether the operator was applied. In our implementation,
we add such predicates to the classical planning model.

Figure 7: Pipeline training phase.

User Guided Exploration
In this section, we put all the pieces together and describe
our implementation of the proposed approach with a view
of user’s interaction with the system.

We have implemented the proposed approach as outlined
in Figure 4 in a python notebook in a docker container. The
user has an option to select a data science grammar from a
list of possible grammars (see for example the grammar in
Figure 2). We then create the HTN domain from the data
science grammar followed by translating the HTN model to
classical planning (Alford et al. 2016). We then allow the
user to select a set of constraints as well as the number of
pipelines they like to generate as shown in Figure 5. This
step is optional, but selecting constraints allows the user to
obtain pipelines that better match what they are interested in.
Recall that the constraints are treated as soft goals; a subset
of them will be met if it is not possible to obtain solutions
that would meet the selected constraints.

Next, the user has the ability to explore the generated
pipelines further by visualizing them. The set of generated
pipelines will be shown in a drop-down menu and the user
has the ability to select a desired pipeline and visualize them.
An example is shown in Figure 6.

The generated pipelines then go to a training phase in
which we use a number of different optimizers. An exam-
ple of a corresponding cell in the python notebook is shown
in Figure 7. Once training is done, we obtain the accuracy of
each generated pipeline and show that to the user, as exem-
plified in Figure 8 (a). The figure shows pipelines, with their
accuracy varying from 0.51 to 0.8. These accuracy num-
bers are then used to update the cost of associated actions.
For example, the pipelines that include GaussianNB() seem
to have a low accuracy which results in associating a high
cost with the GaussianNB() action. Figure 8 (b) shows the
10 generated pipelines sorted based on their cost, and you
can see that just after one iteration, the “after feedback” col-
umn takes into account the updated costs to re-sort. For ex-
ample, the pipelines that include GaussianNB() either drop
down from the list or move down on the list illustrating
the effect of the feedback. On the other hand, given that
the pipeline that included QuadraticDiscriminantAnalysis()
has a high accuracy of 0.8, the pipelines that include
QuadraticDiscriminantAnalysis() either move up the list



(a)
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Figure 8: Feedback mechanism, (a) pipelines accuracy and
(b) comparison between the first and the second iteration.

or new pipelines with QuadraticDiscriminantAnalysis() are
added to the list of generated pipelines.

Experimental Evaluation
In order to empirically evaluate our suggested approach, we
have performed two experiments. First, to evaluate the fea-
sibility of using planning tools in a way we suggest in this
paper, we generated a benchmark set from the grammar pre-
sented in this paper and a randomly chosen subset of con-
straints. By applying the sequence of reformulations as de-
scribed in the paper, we obtain a classical planning task for
each such grammar and a set of constraint. We have cre-
ated a set of 100 tasks, 10 for each constraint size, from 1
to 10 and made the benchmark set publicly available3 (Katz
et al. 2020). The feasibility of our approach is evaluated by
attempting to produce 1000 plans with a K∗ planner (Katz
et al. 2018). The experiments were performed on Intel(R)
Xeon(R) CPU E7-8837 @2.67GHz machines, using a time
and memory bounds of 30 minutes and 4GB, respectively.
Figure 9 shows the total time until all 1000 plans were found.
The planner was able to find all 1000 plans for all 100 tasks
in our benchmark set. For constraint sets of up to size 4, for
all tasks the planner was able to produce all plans in under
6 seconds. For relatively large constraint sets of up to size 7,
the planner always finishes in less than 50 seconds. As ex-

3https://github.com/IBM/PDDL-benchmark-ds-grammar

Figure 9: Total time until 1000 plans are found.

pected, the total time grows exponentially with constraint set
size, but even for very large constraint sets of up to size 10,
the planner always finishes in less than 500 seconds. Note
that while we have scaled the constraint set size to 10, we do
not expect the human experts that work with our application
to select such a large set of constraints.

Second, we compare our proposed methods to the well
established CASH approach for automated Machine Learn-
ing pipeline generation (Thornton et al. 2012; Feurer et al.
2015). For computational reasons, the algorithm selection
in CASH is restricted to 6 data transformers and 8 esti-
mators. The configurations we compare to correspond to
two-step (data transformer step, then modeling step) and
three-step (data scaling step, then data transformer step, then
modeling step) chain-shaped pipelines, HandCrafted 2 ops
and 3 ops, respectively. The CASH problem is solved us-
ing Hyperopt4 (Bergstra et al. 2011), that optimizes both
algorithm and hyper-parameter selection. Since Machine
Learning algorithms have non-categorical hyper-parameters,
our approach also requires the use of hyper-parameter opti-
mization, at least for the non-categorical hyper-parameters.
Therefore, in our experiments, we have decided to defer
the entire hyper-parameter selection to Hyperopt, remov-
ing hyper-parameters from our input grammar. We evaluate
two suggested approaches. Our first approach corresponds
to a single planner run generating 1000 plans and then op-
timizing the corresponding pipelines in the order of plan
costs (One-shot). Our second approach exploits the feedback
mechanism, generating a number of pipelines per round and
modifying the action costs based on the feedback obtained
from the planner (Feedback). We experiment with 20, 40,
60, 80, and 100 pipelines per round. For parity, we restrict
our approach to the same set of Machine Learning algo-
rithms and optimizer (in this case Hyperopt) as the baseline
approaches. Each configuration was executed 10 times for
approximately the same amount of time and we report the
aggregate performance.

4https://pypi.org/project/hyperopt/



Figure 10: Accuracy comparison of our approaches to the state-of-the-art on various datasets. The x axis is in log scale.

We consider 27 datasets from OpenML (Van Rijn et al.
2013) and compare the balanced-accuracy of all evaluated
methods. We observed that all the tested methods achieve
an extremely high accuracy (> 95%) very early on many of
the datasets we experimented with. Therefore, we limit our
presentation to 8 datasets where the maximal achieved accu-
racy was ≤ 95%. Figure 10 depicts the (balanced) accuracy
(and the inter-quartile range across 10 runs) comparison of
our techniques to the hand crafted baseline approaches. For
the Feedback scheme, we utilize 40 pipelines per round. Our
experiments show that changing the number of pipelines per
round has limited effect on accuracy and hence these results
are omitted from the paper. First, note that Feedback accu-
racy is very close to One-shot. We conjecture that our ap-
proach that penalizes algorithms that participate in pipelines
of low accuracy is too simplistic to be able to guide the
search towards pipelines of higher accuracy. Second, in 5 out
of 8 datasets One-shot achieves the highest final accuracy
among the tested approaches. There is only one case when
the HandCrafted 3 ops eventually achieves a better accuracy
and two domains where the final accuracy is eventually the
same.

Related Work
As mentioned before, there is a great deal of similarity be-
tween Context-Free Grammars and HTN Planning (Erol,
Hendler, and Nau 1994; Geier and Bercher 2011), but also
between regular grammars and classical planning (Erol,
Hendler, and Nau 1994; Lekavỳ and Návrat 2007). An-
other previously mentioned work goes the opposite direc-
tion from taken by this work, exploiting planning techniques
for generating CFGs (Segovia-Aguas, Jiménez, and Jons-
son 2017). Going beyond CFGs, Höller et al. (2014) show
that HTN Planning produces context-sensitive languages.
They also identify subclasses of HTN planning that gen-
erate regular or context-free languages. It was also shown
that Combinatory Categorial Grammars (CCGs) can be used

for plan recognition or planning (Geib and Goldman 2011;
Geib 2015). Yet another work exploits attribute grammars to
validate HTN plans (Barták, Maillard, and Cardoso 2018).

Discussion and Future Work
We have introduced a novel application of planning ap-
proaches to automating Machine Learning. Our application
integrates multiple existing planning techniques, including
HTN Planning, classical planning, soft goals, translations
from HTN Planning and from soft goals to classical plan-
ning, solvers that produce multiple solutions, as well as in-
troduces a novel translation from grammars to HTN Plan-
ning. Our application creates a planning model, generates
plans and then iteratively modifies the planning model based
on previously produced plans, to produce plans that better
reflect user preferences. This allows, for the first time, to
easily explore the space of all possible valid pipelines (as
defined by the grammar), without posing severe restrictions
on the set of such pipelines.

Note that this work did not explore various possible model
modifications, given a feedback on the previously found
pipelines. We restricted ourselves to action cost modifica-
tions. Further, our current method is rather straightforward:
we used a very simple linear function to assign scores to in-
dividual pipeline components based on the accuracy of the
entire pipeline. Our experimental evaluation shows that such
an approach does not provide any meaningful benefit over
the base One-shot one. For future work, one possible idea
is to consider action interaction. Another possible future di-
rection is applying our approach to other domains, such as
natural language generation. A connection between natural
language generation and planning has been previously estab-
lished (e.g., Koller and Hoffmann 2010). Grammars are ex-
plored widely for generating natural language and thus our
approach should work almost out of the box, allowing for
focused exploration of possible sentences.
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hierarchical planning – one abstract idea, many concrete real-
izations. In Proc. IJCAI 2019, 6267–6275.
Bergstra, J. S.; Bardenet, R.; Bengio, Y.; and Kégl, B. 2011.
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