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Abstract

While cost-optimal planning aims at finding one best quality
plan, top-k planning deals with finding a set of solutions, such
that no better quality solution exists outside that set. We pro-
pose a novel iterative approach to top-k planning, exploiting
any cost-optimal planner and reformulating a planning task to
forbid exactly the given set of solutions. In addition, to com-
pare to existing approaches to finding top-k solutions, we im-
plement the K∗ algorithm in an existing PDDL planner, cre-
ating the first K∗ based solver for PDDL planning tasks. We
empirically show that the iterative approach performs better
for up to a large required size solution sets (thousands), while
K∗ based approach excels on extremely large ones.

Introduction
Cost-optimal planning is the problem of finding one goal-
achieving sequence of actions or a plan of a minimal
summed up cost. Such plans are of interest in many applica-
tions, where the quality of solution is of extreme importance.
In particular, in problems where preferences or likelihoods
are encoded as cost of the actions (e.g., (Keyder and Geffner
2009; Sohrabi, Udrea, and Riabov 2013)). In many cases,
one best solution is not sufficient, and the desire is to obtain
a set of solutions of a high quality. Top-k planning is one
way of obtaining such a set. It is the problem of finding a set
of solutions of size k, such that no better solution exists out-
side the set. While finding a set of plans is motivated by sev-
eral applications including plan repair, often within the con-
text of diverse planning (e.g., (Fox et al. 2006; Bryce 2014;
Coman and Muñoz-Avila 2011)), other applications includ-
ing risk management, hypothesis and explanation genera-
tion require to focus on high-quality plans instead, as the
underlying approach of plan-recognition-as-planning works
best with such plans (Sohrabi, Udrea, and Riabov 2013;
Sohrabi, Riabov, and Udrea 2016; Sohrabi et al. 2018).

Recently, Sohrabi et al. (2016) proposed the use of
a k-shortest path algorithm called K∗ by Aljazzar and
Leue (2011) to address the top-k planning problem. Their
experimental results have shown that the planning time to
compute top-k plans is comparable to finding the optimal
plan; in addition, the quality of the solutions found is much
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higher compared to the use of the diverse version of the LPG
planner (Nguyen et al. 2012) which computes a set of di-
verse plans. This is not surprising, as the focus of diverse
planning is not on plan quality, making top-k planning the
more suitable approach to the applications above.

One major limitation of K∗ is the consistency require-
ment for the heuristic function. This poses a restriction on
the usability of the approach, disallowing the use of one of
the most successful heuristics to date (Helmert and Domsh-
lak 2009). Further, all plans are found almost simultane-
ously, requiring long time until the first solution is found.
Moreover, the existing implementation of K∗ for planning
is in a planner that supports Stream Processing Planning
Language (SPPL) (Riabov and Liu 2005), and not in PDDL.
Thus, there are no experimental results for K∗ on the stan-
dard planning benchmarks. To alleviate these problems, Ri-
abov, Sohrabi, and Udrea (2014) suggest an iterative ap-
proach to top-k planning, given a solution to a planning task,
encode a set of new planning tasks which, cumulatively, pre-
serve all solutions of the original task, except for the given
one. Then, a search is performed on a tree of reformulations,
invoking an existing planner in each node. As the number
of successors of each node is the number of actions in the
found plan, the clear down side of such an approach is the
large number of invocations of the underlying planner. On
the positive side, the approach exhibits an anytime behavior,
with the first plan found rather quickly.

In this work, we propose an alternative iterative approach
to top-k planning, finding additional solutions by reformu-
lating the planning task at hand into a single task, preserv-
ing all solutions except for the given one. To this end, we
formally define such reformulations and present one such
instance. We then suggest additional ways of deriving solu-
tions from the previously found ones, further reducing the
number of invocations of the underlying cost-optimal plan-
ner. For that, we extend our reformulation to forbid multiple
plans at once, alleviating the increase in task formulation
size. Additionally, we implement the K∗ algorithm on top
of the Fast Downward planning system (Helmert 2006), al-
lowing us to perform the long overdue experimental eval-
uation on International Planning Competition (IPC) bench-
marks, comparing our new iterative approach to K∗. Our
results show thatK∗ works better for extremely large values
of k, while the iterative approach excels otherwise.



Background
We consider classical planning tasks as captured by the well-
known SAS+ formalism (Bäckström and Nebel 1995), ex-
tended with action costs. In such a planning task Π =
〈V ,O, s0, s?, cost〉, V is a finite set of finite-domain state
variables. Each variable v ∈ V is associated with a finite do-
mainD(v) of variable values. A partial assignment pmaps a
subset of variables vars(p) ⊆ V to values in their domains.
For a variable v ∈ V and partial assignment p, the value of
v in p is denoted by p[v] if v ∈ vars(p) and we say p[v]
is undefined if v /∈ vars(p). A partial assignment s with
vars(s) = V , is called a state. State s is consistent with par-
tial assignment p if they agree on all variables in vars(p),
shortly denoted by p ⊆ s. The product S =

∏
v∈V D(v)

is called the state space of planning task Π. The state s0

is called initial state of Π and the partial assignment s? is
called the goal of Π. A state s is called a goal state if s? ⊆ s
and the set of all goal states is denoted by Ss? . The finite set
O is a set of actions, each action is a pair 〈pre, eff 〉 where
pre is a partial assignment called precondition and eff is a
partial assignment called effect. Further, each action o has
an associated natural number cost(o), called cost. An action
o = 〈pre, eff 〉 is applicable in state s if pre ⊆ s. Applying
action o in state s results in a state denoted by sJoK where
sJoK[v] = eff [v] for all v ∈ vars(eff ) and = sJoK[v] = s[v]
for all other variables. An action sequence π = 〈o1, · · · , on〉
is applicable in state s if there are states s0, · · · , sn such that
oi is applicable in si−1 and si−1JoiK = si for 0 ≤ i ≤ n.
We denote sn by sJπK. For convenience we often write
o1, · · · , on instead of 〈o1, · · · , on〉. An action sequence with
sJπK ∈ Ss? is called a plan. The cost of a plan π, denoted
by cost(π) is the summed cost of the actions in the plan.
For a planning task Π = 〈V ,O, s0, s?, cost〉, the set of all
plans is denoted by PΠ. A plan π is optimal if its cost is
minimal among all plans in PΠ. Let Π,Π′ be two planning
tasks with actions O and O′ respectively. A total function
r : O′ 7→ O is called an action mapping. We call the map-
ping r′ : O′n 7→ On for a non-negative integer n, the ex-
tension of action mapping r if for every action sequence
π′ = 〈o′1, · · · , o′n〉 with oi ∈ O′ for 0 ≤ i ≤ n there is
an action sequence π = 〈r(o′1), · · · , r(o′n)〉 and r′(π′) = π.

Having provided the necessary background on classical
planning, let us define the top-k planning problem (Sohrabi
et al. 2016) that is the subject of interest in this paper.

Definition 1 (top-k planning problem) Given a planning
task Π = 〈V ,O, s0, s?, cost〉 and a natural number k, find
a set of plans P ⊆ PΠ such that:

(i) for all plans π ∈ P , if there exists a plan π′ for Π with
cost(π′) < cost(π), then π′ ∈ P , and

(ii) |P | ≤ k, with |P | < k implying P = PΠ.

An instance of the top-k planning problem 〈Π, k〉, is called
solvable if |P | = k and unsolvable if |P | < k.

The objective of top-k planning is finding the k-plans of low-
est costs for a planning task Π and thus optimal planning is
the special case of top-1 planning. Our approach to solving
the top-k planning problem is the topic of the next section.

Repeatedly Forbidding Plans
We now introduce an algorithmic scheme for solving a top-k
planning problem 〈Π, k〉. The key idea of this scheme is an
iteration of the following steps: (1) Find an optimal plan π
for planning task Π. (2) Reformulate Π to a planning task
Π′ with the same set of plans but excluding π. (3) Repeat
(1) with Π = Π′ and π = π′ unless either k solutions have
been found or the Π′ is provably unsolvable. The scheme is
summarized below.

Algorithm 1: IterativeTopK(〈Π, k〉)
P ← ∅, π ← ∅, r ← id
while |P | < k and no failure occurs do

Π, r′←PLANFORBIDREFORMULATION(Π, π)
r ← r ◦ r′
π ← GETOPTIMALPLAN(Π)
if GETOPTIMALPLAN(Π) reports UNSOLVABLE then

return P
end
P ← P ∪ {r(π)}

end
return P

The key challenge of turning this algorithmic scheme into
a concrete algorithm lies in the reformulation. More con-
cretely, in how to forbid exactly one plan while at the same
time preserving every other plan. Next, we state a necessary
condition for such a reformulation.

Definition 2 (plan forbidding reformulation) Let Π be a
planning task over actionsO and π be a plan for Π. A plan-
ning task Π′ over actionsO′ is a plan forbidding reformu-
lation of Π if there exists an action mapping r : O′ 7→ O
and its extension r′ such that π′ is a plan for Π′ iff r′(π′) is
a plan for Π with cost′(π′) = cost(r′(π′)) and r′(π′) 6= π.

We proceed by proving soundness and completeness of
our scheme given some plan forbidding reformulation. Later
we will show how to construct a specific such reformulation.

Theorem 1 The algorithm ITERATIVETOPK is sound and
complete.

Proof: Let P be the set of plans returned by the algo-
rithm, π1 . . . πm be the ordering in which the plans were
found and let Π1 . . .Πm be the sequence of task reformu-
lations constructed by the algorithm such that πi is the op-
timal plan found for Πi. Then cost(π1) ≤ cost(π2) ≤
· · · ≤ cost(πm). If there exists a plan π for Π such that
cost(π) < cost(πi) for some (assume W.L.O.G. small-
est such) i, and π 6= πj for j < i, then from Definition
2, there exists a plan π′ for Πi such that r(π′) = π and
cost(π′) = cost(π) < cost(πi), contradicting the optimal-
ity of the plan πi for Πi. If m < k, then the planning task
Πm+1 is unsolvable, and therefore no other solution exists
for Πm and thus for Π. �

Theorem 1 opens the door to a novel family of algorithms
for top-k planning. Yet, what is missing is to provide a con-
crete plan forbidding reformulation Π−π for planning task Π



and a plan π ∈ PΠ. As mentioned earlier the idea here is that
planning task Π−π forbids the sequence of actions π from be-
ing a plan, accepting all other plans of Π.

Definition 3 Let Π = 〈V ,O, s0, s?, cost〉 be a planning
task and π = o1 . . . on be some plan. The task Π−π =
〈V ′,O′, s′0, s′?, cost′〉 is defined as follows.

• V ′ = V ∪ {v, v0, . . . vn}, with vi being binary variables,
• O′ = {oe | o ∈ O, o 6∈ π}∪{o1, o2 | o ∈ π}∪

⋃n
i=1{o3

i },
where

oe = 〈pre(o), eff (o) ∪ {〈v, 0〉}〉,
o1 = 〈pre(o) ∪ {〈v, 0〉}, eff (o)〉,

o2 = 〈pre(o) ∪ {〈v, 1〉} ∪
⋃

o=oi,1≤i≤n

{〈vi−1, 0〉},

eff (o)∪{〈v, 0〉}〉,
o3
i = 〈pre(oi) ∪ {〈v, 1〉, 〈vi−1, 1〉},

eff (oi) ∪ {〈vi−1, 0〉, 〈vi, 1〉}〉, and

cost′(oe)=cost′(o1)=cost′(o2)=cost′(o3)=cost(o),
• s′0[v] = s0[v] for all v ∈ V , s′0[v] = 1, s′0[v0] = 1, and
s′0[vi] = 0 for all 1 ≤ i ≤ n, and

• s′?[v]=s?[v] for all v∈V s.t. s?[v] defined, and s′?[v]=0.

Let us explain the semantics of the reformulation in Defi-
nition 3. The variable v starts from the value 1 and switches
to 0 when the sequence of actions applied is not a prefix of
π. Once a value 0 is reached indicating a deviating from plan
π, it cannot be switched back to 1. Variables v0, . . . , vn en-
code the progress along the plan π, before deviating from it.
The actions o1 and o2 are the copies of actions in π for the
cases when π is already discarded from consideration (vari-
able v has switched its value to 0) and for discarding π from
consideration (switching v to 0). In case there are multiple
appearances of an action o on a plan, o2 requires all the cor-
responding variables vi−1 for each oi = o to have the value
0. Thus, o2 will be applicable only in states that are differ-
ent from the states resulting from applying a prefix of π up
to some o’s representative in the initial state. o3

i are copies
of actions along π, with a separate copy for each appear-
ance of the same action o. These actions are responsible for
following the sequence π and are applicable only while the
sequence is still followed.

In the following theorem, we show that the planning task
in Definitions 3 is indeed a plan-forbidding reformulation.

Theorem 2 Let Π be a planning task and π be its plan. The
task Π−π is a plan forbidding reformulation of Π and π.

Proof: Let r : O′ 7→ O be the mapping defined by r(oe) =
o and r(o1) = r(o2) = r(o3

i ) = o for all 1 ≤ i ≤ n. Note
that Π−π restricted to the variables V equals to the task Π,
modulo the three equal instances of the actions in π. Thus,
for each plan π′ for Π−π , r(π) is a plan for Π.

For the second direction, since for each o ∈ π at most one
of the actions o1, o2, o3 is applicable in each state s of Π−π ,
given a sequence of actions ρ applicable in the initial state

of Π, it can be mapped to an applicable in the initial state of
Π−π sequence of action ρ′ such that r(ρ′) = ρ, by choosing
in each state the relevant representative out of oe, o1, o2, and
o3. In other words, r restricted to applicable in the initial
state sequences of actions is invertible, and we denote its
inverse mapping described above by r−1.

First, let π′ = r−1(π) be the inverse of the plan π =
o1 . . . on for Π. Then π′ = o3

1 . . . o
3
n, since at step i we have

v0 = 1 and vi−1 = 1. Thus, after applying π′, the value of
the variable v remains 1, and thus π′ is not a plan for Π−π .

Now, let ρ be a plan for Π such that ρ 6= π. Let o be the
first action on ρ that differs from the corresponding action
of π. In other words, there exists a prefix ρ′ = o1 . . . om of
ρ such that (i) ρ′o is a prefix of ρ, (ii) ρ′ is a prefix of π,
and (iii) ρ′o is not a prefix of π. Then we have r−1(ρ′) =
o3

1 . . . o
3
m, and since o 6= om+1, the next action on r−1(ρ)

will not be o3
m+1. If o ∈ π, then the next action will be o2

(which we next show applicability of), and otherwise it will
be oe, in both cases setting the value of v to 0. Thus, all the
following actions o′ are mapped to either o′e or o′1, and the
preconditions of these actions are restricted to V and v = 0,
the sequence of actions r−1(ρ) achieves the goal values on
V and thus is a plan.

We finalize the proof by showing the applicability of o2

in the state s′m := s′0Jo3
1 . . . o

3
mK for o ∈ π such that o 6=

om+1. Naturally, pre(o) holds in s′m. Further, since s′0[v] =
1, s′0[v0] = 1, and s′0[vi] = 0 for all 1 ≤ i ≤ n, after
applying o3

1 . . . o
3
m we have s′m[v] = 1, s′m[vm] = 1, and

s′m[vi] = 0 for all 0 ≤ i ≤ n, i 6= m. Since o 6= om+1, for
each 1 ≤ i ≤ n such that o = oi, we have s′m[vi−1] = 0,
and thus o2 is applicable in s′m. �

Devising Additional Plans
The top-k planning approach proposed in the previous sec-
tion reformulates a planning task of a solvable top-k plan-
ning instance exactly k times. While in each iteration, the
reformulated planning task grows only linearly in the plan
size, for larger k, such an approach is prohibitively expen-
sive for anything but small tasks. How can we bypass this
problem? Given an optimal plan π for Π, it is often possi-
ble to infer additional optimal plans for Π from the structure
of the planning task Π. Our idea is to forbid in each itera-
tion a set of plans instead of a single plan, decreasing the
number of reformulations needed. Before we introduce an
algorithm for this approach, we focus on characteristics of a
graph G(P ) representing such a set of plans.

First, given two plans π1 and π2, if these plans intersect,
i.e., pass through the same state s, then additional plans may
be devised out of these two by following one of the plans
until the state s and the other plan from the state s onwards.
In general, a set of plans P induces a directed graph G(P )
over the states of Π with edges annotated by the actions on
the plans. Each path in G(P ) from the initial state to some
goal state is a plan for Π. Formally, G(P ) = (N,E), where
N = {s ∈ S | o1 . . . on ∈ P, s = s0Jo1 . . . oiK, 0 ≤ i ≤ n}
are all the states encountered by the plans in P and E =
{(s, t) | s, t ∈ S, o1 . . . on ∈ P, s = s0Jo1 . . . oi−1K, t =
sJoiK, 1 ≤ i ≤ n} its edges. Each edge (s, t) is labelled with
the action o ∈ π ∈ P inducing it.



pstart q r
o1, 1

o2, 2

o3, 1

o4, 2

Figure 1: An example task with one variable and four actions
changing its value from the initial value p to q and to the goal
value r. Edges are labelled with actions, costs.

G(P ) can be viewed as a compact representation for a set
of plans P of a planning task Π. Hence, often more plans are
represented by G(P ) as compared to P . Let us now proof
the correspondence of paths in G(P ) and plans for Π.

Lemma 1 Let Π be a planning task and P be a set of plans
for Π. Then, any path in G(P ) from s0 to some goal state of
Π corresponds to a plan for Π.

Proof: Let s0, s1, . . . , sn with sn ∈ Ss? be some path in
G(P ). Each edge (si−1, si) corresponds to some action oi
on a plan in P , and thus oi is applicable in si−1, giving us
o1 . . . on being a plan for Π. �

Theorem 3 Let Π be a planning task and P be a set of op-
timal plans for Π. Then, any path in G(P ) from s0 to some
goal state of Π corresponds to an optimal plan for Π.

Proof: Let s0, s1, . . . , sn with sn ∈ Ss? be some path
in G(P ). From Lemma 1 we have that it corresponds
to some plan o1 . . . on for Π, where each edge (si−1, si)
corresponds to an action oi on some optimal plan in P .
Therefore, h∗(si−1) = h∗(si) + cost(oi) or cost(oi) =
h∗(si−1)−h∗(si). Summing over the actions in the plan we
get

∑n
i=1 cost(oi) =

∑n
i=1 h

∗(si−1)−h∗(si) = h∗(s0).�

If not all plans in P are optimal, we may get plans from
G(P ) with costs larger than of any plan in P . A simple ex-
ample for that is described in Figure 1. There is one optimal
plan π1 = o1o3 with the cost 2, there are two plans with the
cost 3, π2 = o1o4 and π3 = o2o3. If P = {π1, π2, π3}, then
there is also a path in G(P ) that corresponds to a plan o2o4

with the cost 4, which is strictly larger than of any of the
plans in P . An algorithm for extracting plans out of G(P )
must therefore, be able to extract paths of a bounded cost
from G(P ). One approach is a simple traversal of G(P ),
starting from the node s0. Given a bound b on the total plan
cost, a plan can be incrementally constructed by moving
along an edge (x, y) that corresponds to an action o only
if for the plan prefix constructed so far π that leads from s0

to x holds cost(π) + cost(o) + w∗(y) ≤ b, where w∗(y)
is the cost of the cheapest path from y to some goal node
t ∈ Ss? . In other words, we can extend π with o if there is a
possibility to reach the goal under the bound.

Partial Orders on Plans
One simple way to derive additional plans from an existing
one is by reordering the actions along the plan. A sequential
plan corresponds to a total order over the actions in the plan.

s0 s?Pk b
1 L

Pk b
2
R

Pk b
2
R

Pk b
1 L

Mv A B
Dr b

1 L

Dr b 2
R

Dr b 2
R

Dr b
1 L

Mv B A
Pk b

3 L

Pk b
4
R

Pk b
4
R

Pk b
3 L

Mv A B
Dr b

3 L

Dr b 4
R

Dr b 4
R

Dr b
3 L

Figure 2: An order reduction of the example plan for the
GRIPPER task with 4 balls.

It can be reduced to a partial order, which corresponds to
multiple total orders, and thus to multiple plans. A minimal
partial order can be obtained in polynomial time (Bäckström
1998). The suggested procedure greedily attempts to remove
an ordering between two plan actions, while maintaining a
valid partial order plan1. However, the best order of removal
is not clear, and thus particular implementations may vary
significantly in their performance.

In what follows, we propose a slightly different approach,
exploiting the notion of independence between actions
(Wehrle and Helmert 2012). The procedure simply follows
the order of the actions in the plan, gathering (pairwise)
independent actions into the set as long as possible. A
new set is started every time a non-independent action is
met. In what follows, we refer to this procedure as Indep.
The complexity of this procedure is exponential in the
size of the largest independent set of actions (Wehrle and
Helmert 2012). Figure 2 depicts the graph constructed
from a plan π0 = pick(b1, L) pick(b2, R) move(A,B) drop(b1, L)

drop(b2, R) move(B,A) pick(b3, L) pick(b4, R) move(A,B)

drop(b3, L) drop(b4, R) for the GRIPPER planning task with
4 balls, when reducing orders. The graph encodes 16
different plans obtained by reducing the order between
pick(b1, L) and pick(b2, R), between drop(b1, L) and drop(b2, R),
between pick(b3, L) and pick(b4, R), and between drop(b3, L)

and drop(b4, R).

Note that some other valid plan reorderings, such
as pick(b3, L) pick(b4, R) move(A,B) drop(b3, L) drop(b4, R)

move(B,A) pick(b1, L) pick(b2, R) move(A,B) drop(b1, L)

drop(b2, R) are not obtained this way. In order to obtain all
possible reorderings of a plan, one can use, e.g., a traversal
procedure. In such a case, for a set P of partial order plans,
the graph G(P ) is induced by possible sequentializations
of the plans in P . Note that this can be exponential in
the plan length and thus might turn out too expensive in
practice. Since we are interested in a bounded number of
solutions, which might be significantly smaller than the
number of valid reorderings (e.g., in GRIPPER domain),
in our experiments a depth first search traversal without
duplicate detection was chosen. The algorithm is bound
to apply each of the actions on the plan exactly once,
and therefore complete. In addition, a cycle detection is
performed on each path. The number of times the algorithm
has reached the goal is then used in the stopping criteria. In
what follows, we refer to this procedure as Naive.

1A partial order plan is valid if all its total order plans are valid.
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Figure 3: An extension with symmetries of the example plan for the GRIPPER task with 4 balls (a fragment).

Symmetric Plans
One limitation of deriving plans based on reducing orders
between actions is the restriction to the actions of the orig-
inal plan. In what follows, we show how such a restric-
tion can be alleviated. An additional way of deriving plans
from already existing plans is by extending the graph G(P ),
adding its symmetric counterparts in the state transition
graph. This can be done using structural symmetries (Sh-
leyfman et al. 2015). Structural symmetries are permutations
of facts and actions that induce automorphisms of the state
transition graph. Here, we present the definition of structural
symmetries for SAS+ as was given by Sievers et al. (2017).

Definition 4 (structural symmetry) For a SAS+ planning
task Π = 〈V ,O, s0, s?, cost〉, let F be the set of Π’s facts,
i.e., pairs 〈v, d〉 with v ∈ V , d ∈ D(v). A structural symme-
try for Π is a permutation σ : V ∪ F ∪ O → V ∪ F ∪ O,
where:

1. σ(V) = V and σ(F ) = F such that σ(〈v, d〉) = 〈v′, d′〉
implies v′ = σ(v);

2. σ(O) = O such that for o ∈ O, σ(pre(o)) = pre(σ(o)),
σ(eff (o)) = eff (σ(o)), cost(σ(o)) = cost(o);

3. σ(s?) = s?;

where σ({x1, . . . , xn}) := {σ(x1), . . . , σ(xn)}, and for a
partial state s, s′ := σ(s) is the partial state obtained from s
s.t. for all v∈V(s), σ(〈v, s[v]〉)=〈v′, d′〉 implies s′[v′]=d′.

We say that a structural symmetry σ stabilizes a state s
if σ(s) = s. The set of all structural symmetries ΓΠ of a
planning task Π forms a group under the composition oper-
ation. In what follows, for simplicity, by a symmetry group
Γ we refer to a subgroup of the symmetry group ΓΠ of the
planning task Π. In practice, a set of structural symmetries
of a planning task (that stabilize a given state) can be effi-
ciently computed using off-the-shelf tools for discovery of
automorphisms in explicit graphs (Shleyfman et al. 2015).

We extend structural symmetries to sequences of actions
in a natural way. Let σ be a structural symmetry that stabi-
lizes the initial state s0. Then, for a plan π of Π we have
σ(π) being a plan of Π with cost(σ(π)) = cost(π). By PΓ

we denote the closure of P under Γ, i.e., PΓ = {σ(π) | σ ∈
Γ, π ∈ P}.

Theorem 4 Let Π be a planning task, Γ be a symmetry
group of Π and P be a set of Π’s plans. If P is a solution to
the top-|P | planning problem, then PΓ is a solution to the
top-|PΓ| planning problem.

Proof: Let π ∈ PΓ be some plan for Π. Since Γ is a group,
there exists σ ∈ Γ such that σ(π) ∈ P . Since P is a solution
to the top-|P | planning problem, if there exists a plan π′ for
Π with cost(π′) < cost(π) = cost(σ(π)), then π′ ∈ P and
thus π′ ∈ PΓ. �

Similarly, but more generally, we define the closure of a
graph G = (N,E) under Γ as a graph GΓ = (N ′, E′),
where N ′ = NΓ = {σ(n) | σ ∈ Γ, n ∈ N} the closure of
N under Γ and E′ = {(σ(n), σ(n′)) | σ ∈ Γ, (n, n′) ∈ E}.

Theorem 5 Let Π be a planning task, Γ be a symmetry
group of Π and P be a set of Π’s plans. Then G(P )Γ =
G(PΓ).

Proof: First, we show that G(P )Γ ⊆ G(PΓ). Let (u, v) be
some edge in G(P )Γ. Thus u = σ(u′) and v = σ(v′) for
some σ ∈ Γ and edge (u′, v′) ∈ G(P ). Let π′ ∈ P be
some plan that traverses the edge (u′, v′). Then π = σ(π′)
is a plan, and it traverses (u, v). Further, π is in PΓ, and
thus (u, v) ∈ G(PΓ). For the other direction, let (u, v) be
some edge in G(PΓ). Then, (u, v) is traversed by some plan
π ∈ PΓ. Thus, there exist σ ∈ Γ and π′ ∈ P such that
π = σ(π′). Thus, (σ−1(u), σ−1(v)) is traversed by the plan
π′, giving us (σ−1(u), σ−1(v)) ∈ G(P ). Therefore, by the
definition of G(P )Γ we have (u, v) ∈ G(P )Γ. �

Theorems 4 and 5 above allow us to safely extend the
graph G(P ) with symmetries by taking its closure under the
symmetries that stabilize the initial state. That way, meth-
ods extending a set of plans can include a reduction of plan
actions order or a symmetry based extension or both.

Figure 3 depicts (part of) the graph obtained by extending
the example gripper task plan with structural symmetries.
The structural symmetries found on this task are between
balls and between arms, i.e., all balls are symmetric to each
other, and the two arms are symmetric. Note though, that not
all optimal plans are symmetric to each other. For instance,
the example plan π0 = pick(b1, L) pick(b2, R) move(A,B)

drop(b1, L) drop(b2, R) move(B,A) pick(b3, L) pick(b4, R)

move(A,B) drop(b3, L) drop(b4, R) is not symmetric to the plan
π1 = pick(b1, L) pick(b2, R) move(A,B) drop(b1, L) drop(b2, R)

move(B,A) pick(b3, L) pick(b4, R) move(A,B) drop(b4, R)

drop(b3, L) (the last two actions reordered), since there is no
composition of symmetries that permute balls and arms that
can map between the two plans. However, when permuting
ball3 with ball4 and arms together, we obtain the plan
π2 = pick(b1, R) pick(b2, L) move(A,B) drop(b1, R) drop(b2, L)

move(B,A) pick(b4, R) pick(b3, L) move(A,B) drop(b4, R)



drop(b3, L). Both this π2 and π0, if followed through up to
the last two actions, end up in the same state. Thus, adding
both π0 and π2 to G(P ), allows us to extract π1, as it
follows π0 for the first nine actions and π2 for the last two.
All optimal plans for the example task can be obtained this
way and therefore the graph encodes all optimal plans for
this task.

Repeatedly Forbidding Multiple Plans
Having introduced the graph G(P ) as compact representa-
tion of a set of plans P and having clarified how to extract
plans from G(P ), we now devise a reformulation that for-
bids all plans represented by G(P ).

Definition 5 (G(P )-forbidding reformulation) Let Π be a
planning task over actions O and P be some set of plans
for Π. A task Π′ over actions O′ is a G(P )-forbidding
reformulation of Π if there exists a mapping of actions
r : O′ 7→ O, and its extension r′ such that π′ is a plan for
Π′ iff r′(π′) is a plan for Π with cost′(π′) = cost(r′(π′))
and r′(π′) 6∈ G(P ).

In what follows, we sometimes abuse the notation and
treatG(P ) as the set of plans that can be derived fromG(P ),
denoting such plans by π ∈ G(P ). Further, byO(G(P )) we
denote the set of all actions in P . These are exactly the ac-
tions labeling the edges of G(P ). Finally, by Eo we denote
the subset of edges that are induced by the action o, and each
action instance that corresponds to the edge (s, t) is denoted
by o(s,t). We now extend the plan forbidding reformulation
presented in the previous section to forbid all plans inG(P ).

Definition 6 Let Π = 〈V ,O, s0, s?, cost〉 be a planning
task, P be some set of plans, and G := G(P ) = (N,E).
The task Π−G = 〈V ′,O′, s′0, s′?, cost′〉 is defined as follows.

• V ′ = V ∪ {v} ∪ {vs | s ∈ N}, with vs being binary
variables,

• O′ = {oe | o ∈ O \ O(G)} ∪
⋃

o∈O(G)

{o1, o2} ∪
⋃

(s,t)∈E
{o3

(s,t)},

where

oe = 〈pre(o), eff (o) ∪ {〈v, 0〉}〉
o1 = 〈pre(o) ∪ {〈v, 0〉}, eff (o)〉
o2 = 〈pre(o) ∪ {〈v, 1〉} ∪ {〈vs, 0〉 | (s, t) ∈ Eo},

eff (o) ∪ {〈v, 0〉}〉
o3

(s,t) = 〈pre(o(s,t)) ∪ {〈v, 1〉, 〈vs, 1〉},
eff (o(s,t)) ∪ {〈vs, 0〉, 〈vt, 1〉}〉, and

cost′(oe)=cost′(o1)=cost′(o2)=cost′(o3)=cost(o),
• s′0[v] = s0[v] for all v ∈ V , s′0[v] = 1, s′0[vs0 ] = 1, and
s′0[vs] = 0 for all s ∈ N \ {s0}, and

• s′?[v]=s?[v] for all v ∈ V s.t. s?[v] defined, and s′?[v]=0.

The planning task Π−G forbids all sequences of actions
π ∈ G from being a plan, accepting all other plans of Π.
Similarly to the case of a single plan, the variable v starts

from the value 1 and switches to 0 when the sequence of ac-
tions applied is not a prefix of π. Once a value 0 is reached,
it cannot be switched back to 1. The actions o1 and o2

are the copies of actions in π for the cases when π is al-
ready discarded from consideration (variable v has already
switched its value to 0) and for discarding π from consider-
ation (switching v to 0). In case there are multiple appear-
ances of an action o in G, o2 requires all the corresponding
variables vs for each edge (s, t) in E that is induced by o to
have the value 0. Thus, o2 will be applicable only in states
that are different from the states resulting from applying the
prefix of some plan π ∈ G up to o in the initial state. o3

(s,t)

are copies of the corresponding action o alongG, with a sep-
arate copy for each appearance of the same action o. These
actions are responsible for following sequences π ∈ G and
are applicable while some such sequence is still followed.

Theorem 6 Let Π be a planning task, P be some set of
plans, and G := G(P ) = (N,E). The task Π−G is a G-
forbidding reformulation of Π.

Proof: Let r : O′ 7→ O be the mapping defined by r(oe) =
o and r(o1) = r(o2) = r(o3) = o. Note that Π−G restricted
to the variables V equals to the task Π, modulo the three
equal instances of the actions inG. Thus, for each plan π for
Π−G, r(π) is a plan for Π.

For the second direction, since for each o ∈ G at most
one of the actions o1, o2, o3 is applicable in each state s of
Π−G, given a sequence of actions ρ applicable in the initial
state of Π, it can be mapped to an applicable in the initial
state of Π−G sequence of action ρ′ such that r(ρ′) = ρ, by
choosing in each state the relevant representative out of oe,
o1, o2, and o3. In other words, r restricted to applicable in
the initial state sequences of actions is invertible, and we
denote its inverse mapping described above by r−1.

First, let π = o1 . . . on be some plan in G and let π′ =
r−1(π) be the inverse of π. Then π′ = s′0o

3
1s1 . . . sn−1o

3
nsn,

since at step i we have v = 1 and vsi−1
= 1. Thus, after

applying π′, the value of the variable v in sn remains 1, and
thus π′ is not a plan for Π−G.

Now, let ρ be a plan for Π such that ρ 6∈ G. Let o be the
first action on ρ that does not follow a path in G. In other
words, there exists a prefix ρ′ = s0o1s1 . . . sm−1omsm of
ρ such that (i) ρ′o is a prefix of ρ, (ii) ρ′ is a path in G,
and (iii) ρ′o is not a path in G. Then we have r−1(ρ′) =
o3

1 . . . o
3
m, and since o 6= om+1, the next action on r−1(ρ)

will not be o3
m+1. If o ∈ G, then the next action will be o2

(which we next show applicability of), and otherwise it will
be oe, in both cases setting the value of v to 0. Thus, all the
following actions o′ are mapped to either o′e or o′1, and the
preconditions of these actions are restricted to V and v = 0,
the sequence of actions r−1(ρ) achieves the goal values on
V and thus is a plan.

We finalize the proof by showing the applicability of o2 in
the state s′m := s′0Jo3

1 . . . o
3
mK for o ∈ G such that o does not

correspond to any edge (sm, t). Naturally, pre(o) holds in
s′m. Further, since s′0[v] = 1, s′0[vs0 ] = 1, and s′0[vs] = 0 for
all s ∈ N \ {s0}, after applying o3

1 . . . o
3
m we have s′m[v] =

1, s′m[vsm ] = 1, and s′m[vs] = 0 for all s ∈ N \ {sm}.



Algorithm 2: IterativeTopKMultiple(〈Π, k〉)
P ← ∅, T ← ∅, B ← ∅, r ← id
while |T | < k and no failure occurs do

Π, r′←GRAPHFORBIDREFORMULATION(Π, G(P ))
r ← r ◦ r′
π ← GETOPTIMALPLAN(Π)
if GETOPTIMALPLAN(Π) reports UNSOLVABLE then

return SETTOPELEMENTS(T ∪B, k)
end
P ← EXTENDPLAN(Π, π)
TP ← {r(π′) | π′ ∈ G(P ), cost(π′) = cost(π)}
BP ← {r(π′) | π′ ∈ G(P ), cost(π′) > cost(π)}
T ← T ∪ TP ∪ {π′ ∈ B | cost(π′) = cost(π)}
B ← B \ T ∪BP

end
return SETTOPELEMENTS(T, k)

Since o does not correspond to any edge (sm, t), for each
(s, t) ∈ Eo we have s′m[vs] = 0, and thus o2 is applicable
in s′m. �

The scheme, depicted in Algorithm 2, works as follows.
Once a plan is found, it is extended to a set of plans P and
then to the graph G(P ), which is forbidden in the next iter-
ation. Further, the plans encoded by G(P ) are extracted and
partitioned into two sets, optimal plans T and non-optimal
ones B. In the next iterations, the set T is extended with op-
timal plans T ′ from that iteration, as well as all plans of the
same cost as those in T ′ from the set B. The algorithm is
thus iterating until the set T consists of at least k plans or no
more plans exist. In practice, however, the algorithm can be
simplified if the graph G(P ) encodes only plans of the same
cost.

Experimental Evaluation
In order to empirically evaluate the feasibility of our ap-
proach to finding top-k plans, we implemented Algorithm
2 on top of the Fast Downward planning system (Helmert
2006), extended with the support for structural symmetries
and the orbit space search algorithm (Domshlak, Katz, and
Shleyfman 2015; Alkhazraji et al. 2014). As an underlying
classical planner we used an orbit space search, not stabiliz-
ing the initial state, with the LM-cut heuristic (Helmert and
Domshlak 2009), a state-of-the-art heuristic search planner.
A natural candidate as a baseline for the comparison would
be theK∗ algorithm. Unfortunately, the only existing (to our
knowledge) implementation of the K∗ algorithm for classi-
cal planning supports only the SPPL language. Therefore, in
order to be able to compare to an existing method for de-
riving top-k plans, we also implemented K∗ search within
the Fast Downward planning system. As K∗ requires a con-
sistent heuristic, we used the iPDB heuristic (Haslum et al.
2007). Since iPDB may require a long pre-search compu-
tation time, we also experimented with the blind heuristic.
Our benchmark suite includes all 1667 tasks from the op-
timal IPC STRIPS benchmarks. The experiments were per-
formed on Intel(R) Xeon(R) CPU E7-8837 2.67GHz, with
time (memory) limit of 30min (2GB).
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Figure 4: The k-coverage as a function of the restriction on
the number of required plans, for k ≤ 10000.

To measure the effect of various techniques for extending
the set of existing plans, we switched the extension by sym-
metry on and off (adding “S” to the configuration name if
symmetry is switched on), and experimented with the two
aforementioned approaches for plan reordering (Indep and
Naive), as well as not reordering at all (None), giving us in
total six configurations for the iterative approach and two
configurations for the K∗ approach. The experiments were
performed with a large k value, namely k = 10000, aiming
at checking the feasibility of the suggested approaches for
finding a large set of plans.

For a given task and a natural number k, the k-coverage
is a value in {0, 1} assigning the value 1 if a solution to
the top-k planning problem was found (or proven unsolv-
able), according to Definition 1, and 0 otherwise. In order
to measure the effect of the number of required plans k, we
computed the k-coverage for any value of k in [1, 10000],
without rerunning the experiments for that value of k. We
also experimented with a small value of k = 10, obtaining
similar results for all configurations. We also note that for
the iterative configurations, there are only up to 10 tasks for
each configuration that fail on memory, with most failures
being due to timeouts. For K∗ based configurations, the op-
posite is true, with 12 and 68 timeouts for blind heuristic and
iPDB, respectively.

Figure 4 depicts the results for all configurations, summed
over all tasks in our benchmark suite. The horizontal lines
correspond to K∗ with iPDB heuristic (top) and the blind
heuristic (bottom). Both K∗ configurations found all re-
quired plans within a short time window, and thus always
either fail to find any plan or find all required ones. In con-
trast, the iterative approaches exhibit an anytime behaviour.
Further, since the iterative configurations exploit a better un-
derlying classical planner, the k-coverage for smaller values
of k is significantly higher for the iterative approaches than
for the K∗ ones. Looking at the overall k-coverage, we can
see a clear dominance of NaiveS over all other configura-
tions, up to k = 4320. For k > 4320, K∗ with iPDB has the
best overall k-coverage. For specific domains, however, the



k=10 k=100 k=1000 k=10000
Coverage IndepS NaiveS IndepS NaiveS IndepS NaiveS IndepS NaiveS K∗

bl K
∗
iPDB

airport 28 (2) 28 (1) 22 (18) 26 (1) 14 (1) 26 (1) 11 (1) 26 (1) 16 11
barman11 8 (1) 8 (1) 8 (1) 8 (1) 1 (1) 8 (1) 0 (0) 0 (0) 4 4
barman14 3 (1) 3 (1) 3 (1) 3 (1) 3 (1) 3 (1) 0 (0) 3 (1) 0 0
blocks 22 (9) 27 (5) 13 (99) 16 (78) 0 (0) 0 (0) 0 (0) 0 (0) 18 18
childsnack14 6 (1) 6 (1) 6 (1) 6 (1) 6 (1) 6 (1) 6 (1) 6 (1) 0 0
depot 9 (1) 9 (1) 6 (20) 9 (9) 3 (1) 8 (34) 2 (1) 7 (1) 3 3
driverlog 13 (1) 13 (1) 13 (15) 13 (6) 2 (1) 11 (2) 0 (0) 7 (1) 4 4
elevators08 22 (2) 22 (1) 8 (18) 19 (6) 3 (2) 18 (1) 0 (0) 14 (1) 4 4
elevators11 18 (2) 18 (1) 6 (7) 15 (1) 3 (2) 15 (1) 0 (0) 12 (1) 2 2
floortile11 8 (1) 8 (1) 8 (1) 8 (1) 4 (1) 8 (1) 0 (0) 8 (1) 0 0
floortile14 8 (1) 8 (1) 8 (1) 8 (1) 6 (1) 8 (1) 0 (0) 8 (1) 0 0
freecell 13 (2) 14 (1) 6 (75) 11 (36) 0 (0) 2 (1) 0 (0) 0 (0) 13 13
ged14 13 (8) 13 (8) 5 (96) 5 (94) 0 (0) 0 (0) 0 (0) 0 (0) 10 10
grid 1 (9) 1 (9) 1 (99) 1 (99) 0 (0) 0 (0) 0 (0) 0 (0) 0 0
gripper 20 (1) 20 (1) 20 (1) 20 (1) 20 (1) 20 (1) 20 (2) 20 (1) 6 6
hiking14 13 (1) 13 (1) 13 (1) 13 (1) 13 (8) 13 (1) 6 (1) 11 (1) 6 6
logistics00 20 (1) 20 (1) 20 (5) 20 (1) 17 (1) 20 (11) 16 (1) 17 (1) 10 10
logistics98 6 (1) 6 (1) 6 (13) 6 (1) 2 (1) 6 (1) 2 (1) 5 (1) 1 1
miconic 142 (1) 142 (1) 142 (13) 141 (13) 102 (6) 79 (5) 78 (2) 37 (4) 40 40
movie 30 (1) 30 (1) 30 (1) 30 (1) 30 (4) 30 (1) 30 (76) 30 (6) 30 30
mprime 22 (7) 22 (6) 13 (88) 13 (81) 0 (0) 0 (0) 0 (0) 0 (0) 1 1
mystery 19 (6) 19 (6) 15 (61) 15 (58) 4 (1) 4 (1) 4 (1) 4 (1) 5 8
nomystery11 15 (1) 15 (1) 15 (14) 15 (12) 3 (26) 5 (6) 1 (1) 1 (1) 7 9
openstacks08 24 (1) 24 (1) 24 (2) 24 (1) 23 (2) 23 (1) 18 (1) 22 (1) 14 17
openstacks11 19 (1) 19 (1) 19 (1) 19 (1) 19 (1) 19 (1) 16 (1) 19 (1) 9 12
openstacks14 5 (1) 5 (1) 5 (1) 5 (1) 4 (1) 5 (1) 4 (1) 5 (1) 1 1
openstacks 5 (1) 7 (1) 5 (1) 6 (1) 1 (10) 5 (1) 0 (0) 5 (1) 7 7
parcprinter08 18 (2) 18 (1) 17 (30) 18 (6) 5 (2) 17 (1) 4 (2) 16 (2) 7 13
parcprinter11 13 (2) 13 (1) 12 (30) 13 (1) 3 (1) 13 (1) 2 (1) 12 (2) 3 9
parking11 1 (9) 1 (9) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 0
parking14 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 0
pathways-nn 5 (1) 5 (1) 5 (14) 5 (2) 4 (42) 5 (28) 2 (1) 3 (1) 3 3
pegsol08 28 (7) 28 (4) 15 (66) 20 (47) 5 (73) 7 (51) 5 (73) 5 (72) 26 26
pegsol11 18 (6) 18 (3) 5 (44) 9 (17) 0 (0) 3 (1) 0 (0) 0 (0) 16 16
pipes-notank 20 (2) 21 (1) 17 (18) 19 (8) 1 (87) 12 (16) 0 (0) 6 (1) 6 6
pipes-tank 16 (2) 16 (1) 14 (16) 15 (15) 11 (10) 12 (8) 5 (6) 8 (6) 6 6
psr-small 49 (3) 49 (2) 43 (42) 49 (28) 7 (4) 21 (2) 1 (1) 11 (1) 43 43
rovers 7 (1) 7 (1) 6 (30) 7 (3) 0 (0) 5 (84) 0 (0) 3 (1) 4 4
satellite 13 (1) 13 (1) 11 (18) 13 (12) 4 (1) 8 (1) 3 (1) 8 (1) 4 4
scanalyzer08 16 (2) 16 (1) 16 (21) 16 (16) 9 (1) 13 (5) 7 (1) 8 (1) 6 6
scanalyzer11 13 (1) 13 (1) 13 (11) 13 (7) 8 (1) 12 (5) 7 (1) 8 (1) 3 3
sokoban08 14 (6) 29 (2) 6 (75) 23 (20) 0 (0) 11 (1) 0 (0) 10 (1) 15 21
sokoban11 9 (6) 19 (2) 3 (52) 14 (11) 0 (0) 6 (1) 0 (0) 5 (1) 12 17
storage 17 (2) 17 (2) 17 (23) 17 (20) 3 (19) 7 (16) 0 (0) 5 (2) 11 11
tetris14 8 (1) 8 (1) 5 (22) 8 (6) 0 (0) 7 (1) 0 (0) 6 (1) 5 1
tidybot11 11 (1) 14 (1) 3 (68) 14 (5) 0 (0) 10 (1) 0 (0) 0 (0) 1 1
tidybot14 4 (1) 9 (1) 0 (0) 9 (1) 0 (0) 6 (1) 0 (0) 1 (1) 0 0
tpp 7 (2) 7 (2) 7 (19) 7 (18) 5 (7) 5 (8) 4 (1) 4 (1) 5 5
transport08 9 (5) 9 (4) 5 (58) 7 (32) 0 (0) 3 (7) 0 (0) 1 (1) 8 8
transport11 4 (6) 5 (4) 0 (0) 3 (1) 0 (0) 3 (1) 0 (0) 1 (1) 3 3
transport14 2 (5) 4 (3) 1 (22) 2 (1) 0 (0) 2 (1) 0 (0) 1 (1) 3 3
trucks 12 (1) 12 (1) 12 (14) 12 (10) 5 (1) 8 (1) 1 (1) 5 (1) 4 4
visitall11 9 (6) 9 (6) 9 (68) 9 (68) 1 (124) 1 (124) 0 (0) 0 (0) 8 8
visitall14 4 (7) 4 (7) 1 (13) 1 (13) 0 (0) 0 (0) 0 (0) 0 (0) 2 2
woodwork08 18 (1) 18 (1) 18 (15) 18 (3) 8 (10) 16 (1) 4 (1) 13 (1) 4 6
woodwork11 12 (1) 12 (1) 12 (4) 12 (1) 7 (11) 12 (1) 3 (1) 12 (1) 0 1
zenotravel 13 (3) 13 (3) 12 (43) 13 (39) 4 (57) 7 (33) 1 (1) 4 (1) 5 5
Sum 882 927 725 841 373 574 263 423 424 452

Table 1: Per-domain k-coverage for selected values of k. Av-
erage number of iterations in parentheses.

picture might differ substantially.
Table 1 shows the per-domain k-coverage results on se-

lected configurations, namely IndepS and NaiveS for the it-
erative approach and both K∗ configurations for three val-
ues of k, namely k = 10, 100, 1000, 10000. The first two
columns depict the k-coverage of the two iterative configura-
tions for k = 10, the next two for k = 100 and the next two
for k = 1000. The last block of four columns shows the k-
coverage of all four selected configurations for k = 10000.
As mentioned above, the K∗ configurations (two rightmost
columns) perform similarly with all values of k ≤ 10000
and thus are shown once.

First, looking at the rightmost part, corresponding to k =
10000, note that there is no clear advantage to either of the
approaches across the domains. K∗ achieves better perfor-
mance in 23 domains out of 57, while the iterative approach

performs better in 28 domains. Further, there is often a large
difference in coverage between the two approaches, to one
side and to another, making them complementary. Within
each approach, there is a clear advantage to one of the con-
figurations. For the iterative approach, with the exception of
the MICONIC domain, NaiveS performs at least as good as
IndepS, performing strictly better in 37 domains. This dom-
inance is preserved for smaller k values, with strict dom-
inance in 39 domains for k = 1000, in 25 domains for
k = 100, and 10 for k = 10. NaiveS loses to IndepS only in
MICONIC domain, for k > 10. For the K∗ based approach,
there are two domains where the blind search performs bet-
ter than iPDB, namely AIRPORT and TETRIS, and performs
strictly worse in 10 domains. Note that there are 45 domains
with equal k-coverage for the two K∗ based approaches.

Moving on to smaller k values, note that for k = 1000
the dominance shifts further towards the iterative approach,
with 34 domains vs. 17 domains for K∗. For k = 100 it be-
comes 43 domains vs. 10 domains. For k = 10, the iterative
approach always performs at least as good as K∗, achieving
better performance on 54 out of 57 domains.

Looking at some non-IPC domains (Sohrabi, Udrea, and
Riabov 2013; Riabov, Sohrabi, and Udrea 2014; Sohrabi et
al. 2018), we note that these were modelled with planner
efficiency in mind. For the iterative approach, the number
of plans found and forbidden per iteration is typically 1,
and therefore the number of plans found within the time
and memory restrictions is typically low. K∗, on the other
hand, even with the blind heuristic performs extremely well
on these domains, solving all tasks for k = 10000 in all but
the risk management domain (Sohrabi et al. 2018). On this
domain, it finds all 10000 requested top plans in 133 out of
200 tasks, failing to find any plans on the other 67 tasks.

Conclusions and Future Work
We have presented a novel approach to the problem of top-
k planning, based on iterative computation of optimal so-
lutions, exploiting existing optimal planners. We proposed
two techniques for deriving additional solutions from previ-
ously found ones. To empirically evaluate the feasibility of
our suggested approach, we have implemented an existing
approach to top-k planning, K∗, on top of a state-of-the-art
planner. We show that these techniques are complementary
in their performance, with K∗ being more beneficial for ex-
tremely large values of k.

In the future work, we intend to focus on both approaches.
For the iterative approach, other methods for deriving addi-
tional plans given already existing plans can lead to consid-
erable further performance improvement. For the K∗ based
approach, we intend to explore several directions. First, to
investigate the adaptation of the search algorithm to work
with state-of-the-art non-consistent admissible heuristics,
such as LM-cut. Second, we would like to explore the usage
of search pruning techniques, such as partial order reduc-
tion and symmetry reduction for top-k planning, ensuring
that relevant solutions are not pruned. Finally, some effort
should be invested in exploring the high memory consump-
tion of K∗ and ways to overcome it.



References
Aljazzar, H., and Leue, S. 2011. K*: A heuristic search algo-
rithm for finding the k shortest paths. Artificial Intelligence
175(18):2129–2154.
Alkhazraji, Y.; Katz, M.; Mattmüller, R.; Pommerening, F.;
Shleyfman, A.; and Wehrle, M. 2014. Metis: Arming Fast
Downward with pruning and incremental computation. In
the 8th International Planning Competition (IPC-8): plan-
ner abstracts, 88–92.
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Bäckström, C. 1998. Computational aspects of reordering
plans. Journal of Artificial Intelligence Research 9:99–137.
Bryce, D. 2014. Landmark-based plan distance measures
for diverse planning. In Proceedings of the 24th Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS), 56–64.
Coman, A., and Muñoz-Avila, H. 2011. Generating diverse
plans using quantitative and qualitative plan distance met-
rics. In Proceedings of the 25th National Conference on
Artificial Intelligence (AAAI), 946–951.
Domshlak, C.; Katz, M.; and Shleyfman, A. 2015. Sym-
metry breaking in deterministic planning as forward search:
Orbit space search algorithm. Technical Report IS/IE-2015-
03, Technion, Haifa.
Fox, M.; Gerevini, A.; Long, D.; and Serina, I. 2006. Plan
stability: Replanning versus plan repair. In Proceedings of
the 16th International Conference on Automated Planning
and Scheduling (ICAPS), 212–221.
Haslum, P.; Botea, A.; Helmert, M.; Bonet, B.; and Koenig,
S. 2007. Domain-independent construction of pattern
database heuristics for cost-optimal planning. In Proceed-
ings of the 22nd AAAI Conference on Artificial Intelligence
(AAAI 2007), 1007–1012.
Helmert, M., and Domshlak, C. 2009. Landmarks, critical
paths and abstractions: What’s the difference anyway? In
Proceedings of the 19th International Conference on Auto-
mated Planning and Scheduling (ICAPS 2009), 162–169.
Helmert, M. 2006. The Fast Downward planning system.
Journal of Artificial Intelligence Research 26:191–246.
Keyder, E., and Geffner, H. 2009. Soft Goals Can Be
Compiled Away. Journal of Artificial Intelligence Research
36:547–556.
Nguyen, T.; Do, M.; Gerevini, A.; Serina, I.; Srivastava, B.;
and Kambhampati, S. 2012. Generating diverse plans to
handle unknown and partially known user preferences. Ar-
tificial Intelligence 190:1–31.
Riabov, A., and Liu, Z. 2005. Planning for stream processing
systems. In Proceedings of the 20th National Conference on
Artificial Intelligence (AAAI), 1205–1210.
Riabov, A. V.; Sohrabi, S.; and Udrea, O. 2014. New al-
gorithms for the top-k planning problem. In ICAPS 2014
Scheduling and Planning Applications woRKshop, 10–16.

Shleyfman, A.; Katz, M.; Helmert, M.; Sievers, S.; and
Wehrle, M. 2015. Heuristics and symmetries in classical
planning. In Proceedings of the 29th AAAI Conference on
Artificial Intelligence (AAAI 2015), 3371–3377.
Sievers, S.; Wehrle, M.; Helmert, M.; and Katz, M. 2017.
Strengthening canonical pattern databases with structural
symmetries. In Proceedings of the 10th Annual Symposium
on Combinatorial Search (SoCS 2017), 91–99.
Sohrabi, S.; Riabov, A.; Udrea, O.; and Hassanzadeh, O.
2016. Finding diverse high-quality plans for hypothesis gen-
eration. In Proceedings of the 22nd European Conference on
Artificial Intelligence (ECAI), 1581–1582.
Sohrabi, S.; Riabov, A. V.; Katz, M.; and Udrea, O. 2018.
An AI planning solution to scenario generation for enter-
prise risk management. In Proceedings of the 32nd AAAI
Conference on Artificial Intelligence (AAAI 2018).
Sohrabi, S.; Riabov, A.; and Udrea, O. 2016. Plan recogni-
tion as planning revisited. In Proceedings of the 25th Inter-
national Joint Conference on Artificial Intelligence (IJCAI),
3258–3264.
Sohrabi, S.; Udrea, O.; and Riabov, A. 2013. Hypothesis
exploration for malware detection using planning. In Pro-
ceedings of the 27th National Conference on Artificial Intel-
ligence (AAAI), 883–889.
Wehrle, M., and Helmert, M. 2012. About partial order
reduction in planning and computer aided verification. In
Proceedings of the 22nd International Conference on Auto-
mated Planning and Scheduling (ICAPS 2012), 297–305.


