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Abstract

The introduction of the concept of state novelty has advanced
the state of the art in deterministic online planning in Atari-
like problems and in planning with rewards in general, when
rewards are defined on states. In classical planning, however,
the success of novelty as the dichotomy between novel and
non-novel states was somewhat limited. Until very recently,
novelty-based methods were not able to successfully compete
with state-of-the-art heuristic search based planners.

In this work we adapt the concept of novelty to heuristic
search planning, defining the novelty of a state with respect
to its heuristic estimate. We extend the dichotomy between
novel and non-novel states and quantify the novelty degree of
state facts. We then show a variety of heuristics based on the
concept of novelty and exploit the recently introduced best-
first width search for satisficing classical planning. Finally,
we empirically show the resulting planners to significantly
improve the state of the art in satisficing planning.

Introduction

Informative and fast heuristics as well as search-boosting
and pruning techniques are crucial for the performance of
heuristic search based planners. Recent years have seen
considerable advancements in satisficing planning with the
introduction of state-of-the-art heuristics (Keyder, Hoff-
mann, and Haslum 2014; Domshlak, Hoffmann, and Katz
2015), search boosting with multiple queues (Richter and
Helmert 2009; Richter and Westphal 2010; Xie et al. 2014;
Valenzano et al. 2014), and of states pruning techniques
(Domshlak, Katz, and Shleyfman 2013; Lipovetzky and
Geffner 2012). One such technique is based on the con-
cept of novelty of a state, where the search procedure prunes
nodes that do not qualify as novel. The concept has been
successfully exploited in classical planning via STW ™ and
DFS(i) search algorithms and in heuristic search, in con-
junction with helpful actions (Lipovetzky and Geftner 2012;
2014; 2017). Novelty-based pruning was also successfully
applied to blind state-space search for deterministic on-
line planning in Atari-like problems (Lipovetzky, Ramirez,
and Geffner 2015), where it was later generalized to ac-
count for rewards (Shleyfman, Tuisov, and Domshlak 2016;
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Jinnai and Fukunaga 2017). The latter work, although ap-
plied to Atari-like problems, is valid for planning with re-
wards in general, when rewards are defined on states.

In this work, we bring the concept of novelty back to
heuristic search, which is guided by heuristic estimates of
states rather than by rewards. We thus adapt the novelty
definition of Shleyfman, Tuisov, and Domshlak (2016) to
a novelty of a state with respect to its heuristic estimate.
Specifically, we present the theoretical grounds for defining
the novelty of states with respect to their heuristic estimates.
Focusing on the individual facts and a single base heuristic,
we start by introducing the dichotomic novelty notion per
fact (rather than per state) and use it to quantify the novelty
degree of states. This allows us not only to separate the novel
states from the non-novel ones, which was the rationale be-
hind the previous usage of novelty both in classical planning
and in planning with rewards, but also to separate the novel
states based on the degree of their novelty, and even to sep-
arate the non-novel states. Going even further, we quantify
the contribution of the individual facts to the state novelty,
extending the dichotomic notion. Our novelty notion is no
longer used solely for pruning search nodes, but rather as
a preference. We obtain new heuristic functions that are
used for node ordering in a queue. However, since resulting
novelty estimates are essentially goal-unaware, they can not
be used as a single heuristic guidance to a best first search.
Subsequently, we use best first width search, an algorithm
that uses novelty estimates to guide the search, breaking ties
by classical goal-aware heuristic functions (Lipovetzky and
Geffner 2017).

The rest of the paper is structured as follows. The back-
ground section presents the classical planning formalism and
the definition of reward novelty (Shleyfman, Tuisov, and
Domshlak 2016) which we build upon. The next section
presents the theoretical grounds for defining the novelty of
states with respect to their heuristic estimates. Next, we
discuss the various possibilites of exploiting novelty esti-
mates within the heuristic search framework. The experi-
mental section presents an extensive empirical investigation
of various novelty estimates and base heuristics, showing
the benefits of exploiting novelty in practice. Next, we re-
late our work to a recently introduced notion of novelty of
a state with respect to its heuristic estimate (Lipovetzky and
Geftner 2017), discussing the similarities and the differences



between the methods. Finally, we conclude and discuss pos-
sible future directions and prospects.

Background

We consider classical planning tasks II = (V, O, s, s,)
captured by the well-known SAST formalism (Bickstrom
and Nebel 1995). In such a task, V is a set of finite-domain
state variables, with each variable v € ) being associated
with a finite domain D(v) of variable values. A state is a
complete assignment to V, and S =[], ,, D(v) is the state
space of II. The complete assignment s is the initial state
of II and the partial assignment s, is the goal of II. A state
s is a goal state, denoted by s € S;, , iff s, C s. O is a finite
set of operators, each given by a pair (pre, eff) of partial as-
signments to V), called preconditions and effects. Applying
an operator o in a state s results in a state denoted by s[o].
For a variable v € V and a state s, the value of v in s is
denoted by s[v]. For a variable v € V and a value ¢ € D(v),
the pair (v,¥) is called a fact, and the set of all facts of II
is denoted by IF. We sometimes slightly abuse the notation
and refer to a state s as to a set of facts, where f € s iff
f = (v, s[v]) for some v € V.

As our work was inspired by the novelty in the scope of
blind search with rewards for the Atari-like framework (Sh-
leyfman, Tuisov, and Domshlak 2016), we present here the
definition of novelty of a reward seen so far by Shleyfman,
Tuisov, and Domshlak (2016). We reformulate the definition
here in order to show how our definition relates to this one.

Definition 1 (Reward Novelty) Given a reward function
R : S — R and a set of states seen so far S, the nov-
elty score of a fact (variable value) f is defined as

max R(s), € s for some s € S
N(fvsz):{SGS,fXGs () f J

—00, otherwise.

Then, a state s is considered to be novel iff R(s) >
N(f,S,R) for some f € s.

Although the definition is more general, covering sets of
facts, for the sake of readability we restrict our attention here
to individual facts.

Novelty Heuristics for Classical Planning

Our focus in this work is on classical planning as heuristic
search. Thus, we start by adapting the aforementioned def-
inition of novelty of a reward to heuristic search setting as
follows.

Definition 2 (Heuristic Novelty) Given a heuristic func-
tion h : S — R and a set of states seen so far S, the
novelty score of a fact (variable value) f is defined as

min h(s), f € sforsomese S

N(f,8,h) = {Sf

00, otherwise.

Further, given a state s, the novelty score of a fact f in
state s is defined as N(f,s,S,h) = N(f,S,h) — h(s) if
fe€s

We say that a fact is novel in state s if its novelty score in
s is strictly positive, and that a state is novel if it contains at
least one novel fact. In what follows, we sometimes do not
mention the heuristic ~ and the set of states seen so far S
in the notation, where these are clear from the context, e. g.,
writing N (f) instead of N(f,S,h) and N(f,s) instead of
N(f,s,S,h). Our goal here is to define heuristic functions
based on a novelty score of facts in a state. Based on the
definitions so far, we could define a variety of heuristics. Our
first definition is rather basic, separating novel states from
the rest. A heuristic hgy(s) is therefore defined as follows.

o (5) = 0, 3fes, N(f,s)>0
PNAPST11 otherwise.

(1)

This heuristic corresponds to the definition of novelty by Sh-
leyfman, Tuisov, and Domshlak (2016) and presents a ba-
sic dichotomy between states that are novel and those that
are not. It is worth mentioning already here that even such
a simplistic dichotomy leads to remarkable empirical im-
provements.

Observe that the domain of values hgy can possibly ob-
tain is extremely limited, hgy stands for binary novel heuris-
tic. All novel states are treated by the heuristic exactly the
same. To alleviate the problem, we suggest to differentiate
between novel states based on the number of novel facts in
those states. Since heuristic functions are typically built to
prefer lower values, the quantified novel heuristic hqy is de-
fined by

h‘QN(S) = |V‘ _ZN+(fa8)7 (2)
fes

where Nt (f,s) is 1 when N(f,s) > 0 and 0 otherwise.
Similarly, let N™(f,s) be 1 when N(f,s) < 0 and 0
otherwise. Note that hoy, as well as hgy separate novel
states from non-novel ones. The difference between the two
heuristics is that hgy does not separate novel states from
each other, while hqy does. Both hgy and hgy do not sepa-
rate non-novel states though. Thus, hyy dominates hgy in its
informativeness (assuming the same set of states seen so far
S).

Our next heuristic is designed to separate non-novel states
as well. For that, we account both for the number of possi-
tive and negative values N (f, s). The quantified both novel
and non-novel heuristic hqp is defined as

hox(s), hon(s) <[V
hon(s) = [VI+ > N°(f,s), otherwise.
fes

Note that hos dominates hoy in terms of informativeness,
separating more states.

Quantifying Novelty Facts

The estimates we derived so far accounted only for whether
the facts of the evaluated state are novel, assigning to each
fact either 0 or 1. Similarly to how hoy and hgp extend the
dichotomy between novel and non-novel states of hgy, we
would like to extend the dichotomy between novel and non-
novel facts given by Nt (f,s) and N™(f,s). Our aim here



is to account for the value of N(f, s), rather than merely for
its sign. We present one variant of such extension, allowing
each fact to accept a range of values K = {0,...,k} for
some predefined constant k. We do that by mapping N(f, s)
to K via a simple function, setting

k N(f,s) =00
NE(fos) = [BRE2] L 0<N(fis) <00 @)
0, otherwise,

and

kXN(f,s)
Ni(f.s) = {‘ (B N(fs) <0

0, otherwise,

®

where M is sufficiently large to warrant the image is within

the range. The quantified facts heuristic h is then defined

as follows. Let N.¥(s) = 3> N.*(f,s), where op € {+,-}.
fes

Then

K[V = Nif(s), Nif(s)>0
har(s) = k - . (6)
V| + Ni(s), otherwise.
Having M, := max(N(f), h(s)) would result in a fact nov-
elty score representing relative difference between the best-
so-far heuristic value and the current one, while having M
being the same for all states would represent the absolute
difference. However, taking M to be too large would re-
sult in most facts obtaining values closer to O than to k. It is
unclear how to obtain sufficently small, while still feasible
constants. In our experiments, we chose to use the max-
imal base heuristic value observed so far (excluding dead
ends). While not constant, this number rarely considerably
increases during search and thus effectively allows us to ob-
tain an absolute difference.

Multiple Base Estimators

Exploiting multiple estimators during search is a common
practice in heuristic search planning, and many state of
the art heuristic search planners exploit alternation between
multiple queues (Richter and Westphal 2010; Katz and Hoff-
mann 2014). Each of the estimators can be enhanced by
the novelty heuristic. However, different estimators can give
different novelty scores to the same state, and what is the
best way to integrate these scores is an open question. In
what follows, we suggest a simple adaptation of the novelty
heuristic to describe the novelty of a set of base estimators.

Definition 3 Given a set of states seen so far S, a set of
heuristic functions H = {h1,...,hy | hi : S = RT}, and
a state s, the novelty of a fact f in state s is defined as

N(f,5.8,H) =max N(f,5,5,h) if [€s.
€
The heuristic functions hgy, hon, hos, and hge defined

in Egs. 1-6 are obtained by replacing N(f,s, S, h) with
N(f,s, S, H).

Exploiting Novelty Heuristic in Search

Note that our novelty heuristics are not goal-aware. Further,
they all give a score of 0 to the initial state. Such heuristics
are not meant to be used as a sole search guidance in a best
first search, but rather together with an additional heuristic,
that guide the search towards the goal. In what follows, we
use the base heuristic function h as such guidance, especially
since we have already paid the price of computing h.

There are several mechanisms that allow for co-exploiting
several heuristic guidances in a single search. The two most
well-known are alternation between multiple queues, hence-
forth denoted by [x,y], and tie breaking. Naturally, for tie
breaking, the order in which the ties are broken is extremely
important. If the base heuristic is used first, breaking ties by
a novelty heuristic, then the novelty heuristic will come into
play only on the plateaus of the base heuristic, resulting in a
similar behavior to a search with the base heuristic only.

In this work, our goal is different, we want to guide the
search to examine novel states first. For that, we use the
best first width search (BFWS) algorithm, which is a stan-
dard best first search that uses novelty heuristic as an initial
heuristic, breaking ties by the base heuristic (Lipovetzky and
Geffner 2017). This will essentially result in the same be-
haviour as if we defined several sequential queues to choose
from. The heuristic hpy(s) basically emulates two queues,
for novel states and for the rest, choosing from the non-novel
queue only if the novel queue is empty. The heuristic hqy
emulates |V| + 1 queues, while hqs(s) emulates 2|V| + 1
queues. Note that using hqr allows to somewhat control the
number of queues, varying the parameter k, getting up to
2k|V| 4+ 1 queues. Having too many queues, however, is a
rather undesired behavior, since in the extreme case of all
states having different heuristic values, the search is guided
solely by the novelty heuristic, which as noted above, is not
goal aware.

Experimental Evaluation

In order to evaluate the impact our novelty definition has on
heuristic search planning, we implemented the three afore-
mentioned heuristics within the Fast Downward planning
framework (Helmert 2006). Our code is available upon
request. All experiments are performed on an Intel(R)
Core(TM) i7-3740QM CPU @ 2.70GHz, with a timeout of
30 minutes and a memory bound of 2GB, over the bench-
mark of STRIPS problems from the International Planning
Competitions up to 2011.

First, we examine the effect of novelty on a single heuris-
tic in a best first width search (BFWS) with lazy eval-
uation and no search enhancements such as helpful ac-
tions/preferred operators. When only the base heuristic is
used, BFWS is a standard greedy best first search (GBFS).
We evaluate our four novelty variants hgy, hon, and hgg
on the commonly used heuristics FF (h™) (Hoffmann and
Nebel 2001), landmarks count (h'™) (Porteous, Sebastia,
and Hoffmann 2001), and goal count (h°“) (Fikes and Nils-
son 1971). In what follows, we depict by hit the nov-
elty heuristic where Y is the novelty variant and X is
the base heuristic. We denote the tie breaking scheme by
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Figure 1: Evaluated nodes for (a) hgy vs. h'™, (b) hdy vs. hgl, and (c) Aoy vs. Ay

Coverage R™ hix hox hos hee] B™ hun hon hew
airport 500 31 39 38 39 50| 29 32 32 37
barmanl 1 20 4 14 14 17 9] 20 13 13 13
depot 22| 15 18 20 21 20 14 18 19 19

driverlog 200 18 20 20 20 20 18 18 18 19
elevatorsO8 30| 11 10 10 9 11} 23 30 30 27
elevators11 20 0 0o o0 0 0 5 10 10 10
floortilell 20 8 7 6 6 8 0O 0O 0 O
freecell 80| 8 79 80 79 79| 80 80 80 80
grid 5\ 4 5 5 5 4 4 4 4 5
logistics98 35| 24 25 25 25 20/ 13 16 16 16
mprime 35/ 31 35 35 35 35 18 20 19 19
mystery 300 18 19 19 19 19 13 12 12 12
nomysteryll 20 8§ 12 12 14 14 12 16 17 17
openstacks08 30 6 6 6 6 6/ 30 30 30 30
openstacks11 20 0O 0O O O 0 20 20 20 20
openstacks 30 30 30 30 30 24/ 30 30 30 30
parcprinter08 30| 23 27 27 27 28] 28 29 27 30
parcprinter11l 20 7 15 15 15 16/ 18 19 19 19
parkingll 20 7 20 20 20 6/ O 3 5 10
pathways-nn 30{ 11 22 23 23 14 5 8 8 8
pegsol08 30 30 30 30 30 30 30 30 30 29
pegsolll 200 20 20 20 20 20 20 20 20 19
pipes-notank 50| 30 41 41 42 42| 37 36 36 33
pipes-tank 50| 22 36 38 40 37| 23 28 30 32
rovers 40 22 36 39 39 34| 21 23 23 23
satellite 36| 25 26 24 24 21 9 11 11 11
scanalyzer08 30, 28 30 30 30 29| 30 30 30 30
scanalyzerll 20| 18 20 20 20 20/ 20 20 20 20
sokoban08 30| 28 28 28 28 29| 16 16 15 16
sokobanll 20/ 18 18 18 18 19 8 8 7 8

storage 300 19 26 25 26 26 17 20 22 22
tidybot11 200 16 17 17 17 15 20 20 20 19
tpp 300 20 30 30 30 25 23 28 27 27
transportO8 30/ 11 28 28 28 16/ 30 30 30 30
transportll 20| O 10 11 11 1| 18 20 20 20
trucks 300 14 17 18 22 18 7 8 71 17

visitalll1 20 320 20 20 9] 20 20 20 20
woodworkO8 30| 30 30 30 30 23] 28 30 30 30
woodworkll 20| 19 20 19 19 8 15 20 16 16
zenotravel 200 20 20 20 20 20 18 19 19 19
Sum 1143] 729 906 911 924 825 790 845 842 852
Sum total 1456|1042 1219 1224 1237 1138|1103 1158 1155 1165

Table 1: Coverage for GBFS and BFWS when novelty used,
comparing novelty variants hgy, hon, fgs, and hqg for h, tie
breaking on h to the base heuristic h for h € {h', '™} .

QB

hilhza|...|hy. Further, since in BFWS the novelty heuris-
tic is always used as a first heuristic, breaking ties by other
heuristics, hff also depicts the tie breaking scheme where
the novelty heuristic is the first heuristic and the ties are bro-
ken by the base heuristic X . For example, h}y describes the
configuration where hgy of A™ is a first heuristic, tie break-
ing by h'F, otherwise written by hE: |hFE.

Table 1 depicts the per-domain coverage results for our
first three variants of the novelty heuristic with A™ and
h*™. Observe first that all novelty configurations perform
much better in terms of the overall coverage than the base
configurations A™ and A™™, with the maximal difference
of 195 tasks for the best configuration hgy. Focusing first
on the leftmost part of the table, first four columns that
presents results for A™ and the first three novelty variants
with A" being the base heuristic, observe that there are mul-
tiple domains with a massive increase in coverage, such
as PIPESWORLD-TANKAGE (18 tasks), ROVERS, TRANS-
PORTOS8, and VISIT-ALL (17 tasks each), BARMAN and
PARKING (13 tasks each), PATHWAYS and PIPESWORLD-
NOTANKAGE (12 tasks each), TRANSPORT11 (11 tasks),
and TPP (10 tasks). Domains with a more “modest” in-
crease include AIRPORT, PARC-PRINTER11, and TRUCKS
(8 tasks each), as well as STORAGE (7 tasks), DEPOTS
and NOMYSTERY (6 tasks each), MPRIME and PARC-
PRINTEROS8 (4 tasks each). There are also domains where
novelty confugurations seem to cause a slight coverage re-
duction, such as ELEVATORS08, FLOORTILE, FREECELL,
and SATELLITE. Interestingly, in some of these domains,
namely in ELEVATORS08 and SATELLITE novelty seems to
contribute when used with 2™ as a base heuristic.

Focusing now on the rightmost part of the table, the A
based configurations, the overall increase in coverage when
exploiting novelty is not as impressive as for A", but is still
very large. The overall coverage is increased by all novelty
configurations, hitting the top of 62 tasks with hgy. There
are still many domains with a large coverage increase, such
as PARKING (10 tasks), PIPESWORLD-TANKAGE (9 tasks),
AIRPORT (8 tasks), ELEVATORSO0S8 (7 tasks), DEPOTS, EL-
EVATORS11, NOMYSTERY, STORAGE, TPP, and WOOD-
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Figure 2: Evaluated nodes for (a) hg;. vs. ™, (b) hgp. vs. hgy, and () hgp vs. hy in AIRPORT domain.
WORKING 11 (5 tasks each). Further, the coverage reduction Coverage |, *lFZ‘Lthmm L[ hLM“”:lth“‘LM
here can be quite large, e.g. 7 tasks in BARMAN domain ; o "on Mou o Top Top
and 4 tasks in PIPESWORLD-NOTANKAGE domain. The A" ﬁlrport (50) 33 37 42401 301 38 37 35

. . . armanl1 (20) 31 17 14 10/ 17| 20 20 18

based novelty configurations excel in both of these domains. depot (22) 6l 19 18 211 16| 18 20 21
In order to look beyond the per-domain coverage, Figure driverlog (20) 171 20 18 20/ 15/ 19 20 20

1 pairwise compares the three novelty variants of A" from elevators08 (30) 10 13 29 29| 13| 29 12 30
Table 1 and h™ in terms of number of nodes evaluated dur- elevators11 (20) o 0 9 9 0 10 0 10
ing the search. Interestingly, the clearest win picture appears floortilel 1 (20) 46 4 5 3l 4 5 3
in Figure 1a, showing a comparison of A" to hix, which is freecell (80) 78 80 79 78 79 79 80 78
not the best performing variant in terms of overall coverage. igm.l 5) X 4 4 55
. . P ogistics98 (35) 22| 26 20 27| 19| 20 27 27
Looking deeper into how the novelty heurlstlcs.lmprove one mprime (35) 311 35 32 35| 31| 32 35 35
on top of another, Figure 1b shows that despite the better mystery (30) 181 18 18 19/ 17| 18 18 18
overall performance of hgy compared to hyy, there is a suf- nomystery11 (20) 8l 14 17 16/ 10| 17 15 16
ficient amount of tasks where hLy performs better, and in openstacksll (20)| 20| 16 20 20| 20| 20 16 20
some cases even solves tasks where hf fails. The same is parcprinter08 (30)| 22| 27 30 28| 30| 30 27 30
true when comparing hfy, to hgy (Figure Ic), although here parcprinterl1 (20); 7/ 15 20 16} 20/ 20 15 20
the win picture is more clear. parking11 (20) 13 20 20 20 20/ 20 20 20
. . L. pathways-nn (30) 9 23 17 26| 19| 17 24 26

We havq also e'xpe.rlr.nented. with the goal count heurlstlc. pipes-notank (50) | 33| 42 33 42| 34| 31 42 42
Here the picture is similar, with overall coverage increased pipes-tank (50) 24| 39 31 40| 26/ 33 39 41
by 59 tasks with Ay, by 73 tasks with hgg, and by 76 tasks rovers (40) 22| 38 31 37| 26| 31 38 37
with hg, compared to the base configuration of greedy best satellite (36) 21 25 13 27| 18] 13 25 26
first search with the goal count heuristic A, which solved scanalyzer03 (30) | 28| 30 30 30| 27/ 28 30 28
up to 913 tasks overall. scanalyzerll (20)| 18| 20 20 20| 17| 18 20 18
sokoban08 (30) 28| 28 29 28| 29| 29 28 28

ep . sokobanl1 (20) 18 18 19 18] 19 19 18 18
Quantifying Novelty Facts storage (30) 18] 26 21 25| 17| 21 25 25
In order to empirically test the benefits of extending nov- tidybot11 (20) 15/ 1718 - 17) 142018 17
Ity fact dichotomy, we implemented the hqg heuristic in PP 30 24| 3024301 241 25 30 30
clty Tact dichotomy, we impiemented the fige heuristic transport08 (30) 11| 28 30 30/ 30/ 30 30 30
the same framework. Eor the reasons menpqned earlier, transport11 (20) ol 10 13 13/ 13 20 19 18
we use for M, the maximal finite base heuristic value ob- trucks (30) 151 21 18 18] 15| 17 21 18
served so far. In order to measure the effect of various k visitall11 (20) 51 20 20 200 20, 20 20 20
values, we experimented with &k € {1,10,100,1000}. The woodwork08 (30)| 30| 30 30 30/ 29| 30 30 30
best performance in terms of coverage was observed for woodwork11 (20)| 18| 18 17 17} 15| 16 18 17
k = 100. For the values of ¥ = 10 and k£ = 1000, the éenotg\(/)gl?’()ZO) 65 8?1) 8§g 8;2 . éj 8%2 8?7) Sgg

: : um
coverage slightly decreases, with the worst performance ob Sum total (1456) | 10861274 1251 1300] 1177|1259 1290 1318
served for k = 1. For the lack of space, we report here

the results for £ = 100. The coverage results are depicted
in the last column of the leftmost part of Table 1. While
hgy seems to perform overall worse than the first three nov-
elty heuristic variants (1138 tasked solved overall, com-
pared to 1219 for ALR), it outperforms h™ overall by 96

Table 2: Coverage for GBFS and BFWS when either three
novelty variants used, over h'™, over h™, and over both,
with ties broken first by A™ and then by A™™ or viceversa.
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Figure 3: Evaluated nodes for (a) hgy vs. h*", (b) alternation between hgy and A" vs. alternation between h*® and h*, and

(c) alternation between hgy and h'™™ vs. AR,

tasks. g outperforms other novelty variants on several
domains, namely AIRPORT, ELEVATORS08, FLOORTILE,
PARC-PRINTERO8, PARC-PRINTERI1, and SOKOBAN. It
performs especially well in the AIRPORT domain, solving all
50 tasks. To our knowledge, no other domain-independent
planner can solve all tasks in the AIRPORT domain.

Figure 2 presents the results for the hg; variant, compar-
ing it to h™ (Figure 2a) and to hg, (Figure 2b) in terms of
evaluated nodes. Looking beyond the coverage, Figure 2a
hints that A™ and hg; have a complementary performance,
showing that most tasks are positioned sufficiently far from
the diagonal. Further, it shows a large amount of tasks that
were solved by 2™ but not by A and vice versa. Figure 2b,
while indicating that hgj performs better than hg. overall,
shows a considerable amount of tasks that were solved by
the latter but not by the former. Finally, Figure 2c zooms
in on the AIRPORT domain, on which Ag;. demonstrates an
exceptional performance.

Multiple Heuristics

Table 2 shows the effect of exploiting multiple base esti-
mates within the novelty heuristic. Since these multiple es-
timates are computed for the benefit of novelty heuristic, we
exploit them for tie breaking. The two base estimates we
experimented with are A™ and h™. Two base configura-
tions in columns 1 and 5 are greedy best first search with
h'F, breaking ties by h'™, denoted by FF|LM, and with h*M,
breaking ties by A, denoted by LM|FF, respectively. All
other configurations employ BFWS using a novelty heuris-
tic, breaking ties by either first A™ and then 2™ (columns
2-4) or first h*™ and then A (columns 6-8). Columns 2
and 7 employ hg; as a first heuristic, while columns 3 and 6
start with hgy. Columns 4 and 8 describe the configurations
with novelty heuristic based on both A™ and h™, denoted by
has™. In what follows, we refer to the configurations in the
first 4 columns as the FF|LM scheme, and to those in the last
4 columns as the LM|FF scheme. When the scheme is clear
from the context, since the tie breaking is the same across
the configurations, we refer to the individual configurations

by their novelty heuristic. For example, in the context of
FF|LM scheme, the configuration in column 2 is referred to
as hoy-

The overall coverage for the FF|LM scheme increases with
more sophisticated novelty configurations. The best config-
uration, employing novelty of multiple heuristics increases
coverage by 223 tasks compared to not using novelty at all
and by 35 and 58 tasks compared to hgy and hgy, respec-
tively. For the LM|FF scheme, the picture is similar, with
novelty of multiple heuristics increasing coverage by 141
tasks compared to not using novelty at all and by 28 and 59
tasks compared to hgy, and hgy, respectively. Looking at per
domain coverage, in most domains taking both heuristics as
a base for the novelty heuristic improves coverage compared
to not using novelty. For the FF|LM scheme, the coverage is
improved in 29 out of the 46 domains, sometimes dramati-
cally (19 tasks each in ELEVATORS08 and TRANSPORTOS,
17 tasks in PATHWAYS, 16 in PIPESWORLD-TANKAGE, 15
tasks each in ROVERS and VISIT-ALL, 13 tasks in TRANS-
PORT1 1, etc.), and is reduced by one instance in one domain.
Similarly, for the LM|FF scheme, the coverage is improved in
26 domains and decreases in three domains by one instance
each. Here also the increase in coverage is often dramatic,
exemplified by 17 tasks in ELEVATORSO0S8 and 15 tasks in
PIPESWORLD-TANKAGE.

Comparing to exploiting a single heuristic for novelty
computation on a per domain basis, for the FF|LM scheme,
the coverage increases in 15 domains and decreases in 7
compared to hgj and increases in 14 domains and decreases
in 9 compared to hgy. The largest decrease is 7 tasks in
BARMAN compared to hgy, and 4 tasks each in BARMAN
and PARC-PRINTER11 compared to hgy. The largest in-
crease is by 16 tasks in ELEVATORS08 compared to hgy and
14 tasks in SATELLITE compared to hgy. In SATELLITE,
however, this large increase is due to the poor performance
of hgy compared to the base configuration without novelty.
For the LM|FF scheme, the coverage increases in 10 domains
and decreases in 11 compared to hgy and increases in 15
domains and decreases in 9 compared to hgy. The largest



Coverage R¥® hgE | [A*%,RMM] [AgR,R™M]
airport (50) 34 39 32 43
barmanl1 (20) 18 20 19 20
depot (22) 19 20 18 20
driverlog (20) 20 20 19 20
floortile11 (20) 7 7 4 3
freecell (80) 80 79 78 80
grid (5) 4 5 5 5
mprime (35) 35 35 31 35
mystery (30) 18 19 18 19
nomysteryl1 (20) 14 18 15 19
parking11 (20) 14 20 20 20
pathways-nn (30) 21 23 14 26
pipes-notank (50) 41 43 39 43
pipes-tank (50) 38 38 26 41
rovers (40) 40 36 32 37
scanalyzer0O8 (30) 28 30 30 29
scanalyzerl1 (20) 18 20 20 19
sokoban08 (30) 26 27 26 27
sokobanl1 (20) 16 17 16 17
storage (30) 20 25 17 25
tidybot11 (20) 15 17 15 18
tpp (30) 30 30 19 30
trucks (30) 15 18 15 18
woodwork11 (20) 20 19 20 20
Sum (722) 591 625 548 634
Sum total (1456) 1325 1359 1282 1368

Table 3: Coverage for GBFS with h*®, BFWS with hgj,
alternation between hR® and h'™ (marked by [AR®,A"M]), and

alternation between hgp and h™™ (marked by [hgy.h"™]).

decrease is 3 tasks in both cases (TRUCKS for hg;, and AIR-
PORT and TIDYBOT for hgy), while the largest increase is by
18 tasks in ELEVATORSO08 compared to Agy and 13 tasks in
SATELLITE compared to hgy, which is similar to the FF|LM
scheme.

Novelty and State-of-the-art Heuristic Search

In order to test whether the novelty heuristic can contribute
to the state of the art of heuristic search planning, we en-
hanced the Mercury planner (Katz and Hoffmann 2014) with
our best performing variant, hqs heuristic. Since we are
interested in coverage, we focus on the first iteration of
Mercury, which performs a greedy best first search with a
red-black planning heuristic h*® (Domshlak, Hoffmann, and
Katz 2015), alternating with a queue ordered by preferred
operators taken from the underlying A™ heuristic. In our
first variant, we use BFWS and apply hqg to A%, breaking
ties by h*® (denoted by hgp). Here as well, the preferred
operators were taken from the underlying A™ heuristic. Fur-
ther, we compare to a variant with additional queues ordered
by the landmark count heuristic A" and preferred opera-
tors from h'M, alternating between these queues, denoted
by [h®E, h'™]. This variant is similar to the scheme em-

ployed by the LAMA planner, with the main difference being
that h'" is replaced by AR®B. Finally, we enhance this variant
by using BEWS with A} instead of h*® (denoted by [hg},
h™T1). Applying novelty also to A did not render better re-
sults in the last scheme. The coverage results are depicted in
Table 3. Compared to Mercury (first column), the coverage
is significantly increased by both configurations that employ
the novelty heuristic (columns two and four). Comparing
our best configuration (column four) to Mercury, the cover-
age decreases in two domains, FLOORTILE and ROVERS and
increases on 17 domains, with overall increase in coverage
by 43 tasks.

Figure 3 pairwise compares configurations from Table 3
in terms of evaluated nodes. Figure 3a compares the en-
hancement of h*®, h to A*®. Our best performing configu-
ration, alternation between Ay and h'" is compared to alter-
nation between h*® and h'™ (Figure 3b) and to h*® (Figure
3c). Focusing on Figure 3c, depicting our best configuration
vs. Mercury, there is no clear overall dominance of any of
the configurations over the other, with the difference in the
evaluated nodes getting up to four orders of magnitude in
favor of novelty and up to three orders of magnitude in fa-
vor of Mercury in extreme cases. Note that most tasks are
not on the diagonal, leaning towards one of the configura-
tions, and thus the behaviour of these two configurations is
complementary.

Recent Novelty-based Heuristic

Recently, a heuristic based on the notion of novelty was
suggested (Lipovetzky and Geffner 2017). The core idea
of the proposed heuristic is similar to ours. However, the
definitions, although similar, vary a lot in the problem as-
pects tackled. In order to discuss the differences, we present
here the definition of (Lipovetzky and Geffner 2017). The
novelty-based heuristic [V}, is defined as

_J0, Ffes: hs) g {n(s") | ' €5, f e s}
Nuls) = {1 otherwise.

Observe that our binary novelty heuristic hgy can also be
viewed as

B (>{O, df€s: h(s) <min{h(s') |s' €S, f € s’}
BN(S) = 1

In words, the heuristic NV}, defines a state to be novel if it
achieves some heuristic value for the first time for at least
one state fact. For instance, if heuristic values 3 and 5 have
been achieved for a certain state fact, and now a value of 4 is
observed, the state is considered to be novel. Thus, for each
fact, all heuristic values observed so far are stored. For hgy
on the other hand, a state is novel if its heuristic value is the
best so far for at least one state fact. As a result, only one
value must be stored per fact.

It is worth mentioning that although the novelty-based
heuristic suggested by Lipovetzky and Geffner (2017) does
not go beyond the dichotomy between novel and non-novel
states, it can be adapted to a quantitative measure of novelty,
that separates novel states, analogously to the hqy heuristic.

otherwise.



Coverage Nep  hER
barmanl1 (20 12 14
depot (22 22 18
elevators08 (30 14 10
elevators11 (20) 1 0
parcprinter0O8 (30) 26 27
parcprinterl1 (20) 10 15
pipes-notank (50) 46 41
pipes-tank (50) 42 36
scanalyzer08 (30) 28 30
scanalyzerl1 (20 18 20
storage (30) 25 26
tidybot11 (20) 16 17
transport08 (30) 23 28
transport11 (20) 4 10
trucks (30 18 17
Sum 422) 305 309
Sum total (1456) 1215 1219

(a)

Figure 4: Comparison between the basic novelty heuristic AL

coverage, and (b) per-instance evaluated nodes.

It is unclear though whether an analogue of our hqp heuristic
that quantifies the non-novel states can also be derived.

Since N, only separates novel states from non-novel
ones, we compare it to our basic novelty heuristic hgy,
which also only separates novel states from non-novel ones.
For that, we implemented the heuristic of Lipovetzky and
Geffner (2017) in the same framework as our heuristics. The
table in Figure 4a depicts the overall coverage comparison
for BFWS with the two novelty variants, using h™ heuris-
tic as a base and for tie breaking. There are 15 domains in
which coverage differs, of which 9 domains in favor of ALY,
showing that the approaches are somewhat complementary.
To demonstrate further that the approaches are complemen-
tary, Figure 4b shows a per instance comparison in terms of
the number of evaluated nodes during search.

Conclusions and Future Work

We presented a quantitative notion of state novelty with re-
spect to known heuristic estimates and suggested one way
of exploiting this notion within heuristic search for satis-
ficing classical planning. We differentiated not only how
novel is a state but also how non-novel it can be. We further
suggested that not all facts should contribute equally to the
degree of state (non-)novelty. As a result, we showed how
to derive multiple novelty heuristics integrated with other
state-of-the-art goal aware heuristics, and tested their perfor-
mance experimentally, finding them to perform extremely
well. Finally, we demonstrated that novelty heuristics ap-
plied to the state-of-the-art heuristic search planner Mercury
significantly improved its performance.
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and the recently proposed heuristic Vg in terms of (a) per-domain

The presented concept of novelty opens up many inter-
esting research directions. First, we suggested one way of
quantifying the novelty of a fact, which is biased towards 0
values on larger base heuristic values. This can be an ad-
vantage on some domains, specifically we conjecture that it
is the reason for the excellent performance in the AIRPORT
domain, solving all 50 instances. But on many other do-
mains it does not match the performance of our top novelty
based performers. Thus, an investigation is needed on alter-
native quantification methods of state novelty in general, and
the degree of contribution of each fact. Second, our current
definition and implementation of handling multiple base es-
timates is rather straightforward. We explore one option of
maximizing over the given heuristics. One could think of
other aggregation methods. On the implementation side, we
are required to store multiple estimates per fact, which can
be quite memory inefficient. Other methods may be found
to perform better. Third, the definitions of state novelty pre-
sented in this work operate with individual facts. Further,
these definitions exploit the set of all individual facts. Both
these restrictions are unnecessary. The definitions can be
adapted to fact sets instead of individual facts, aggregating
over arbitrary sets of such fact sets. This is a promising di-
rection of great potential. There are many challenges here:
how to derive informative and yet sufficiently small sets of
fact sets; how to succinctly keep the “best estimates so far”
for large sets of fact sets, and finally; how to aggregate the
individual fact sets within an overall estimate. Last, but not
least, extending the concept of heuristic novelty to richer for-
malisms is a promising direction for future research.
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