
Symmetry Breaking: Satisficing Planning and Landmark Heuristics

Carmel Domshlak
Technion

Haifa, Israel
dcarmel@ie.technion.ac.il

Michael Katz
Saarland University

Saarbrücken, Germany
katz@cs.uni-saarland.de

Alexander Shleyfman
Technion

Haifa, Israel
shleyfman.alexander@gmail.com

Abstract

Searching for computational tools that can further push the
boundary of satisficing planning, we show that reasoning
about state-space symmetries can substantially improve even
the most effective heuristic-search satisficing planners, with
respect to all standard performance measures. The improve-
ment comes from the state-space pruning, as well as from
transparent cost-to-state updates and heuristic enhancement
by information obtained during the search at different sym-
metric states.

Introduction
Over the last two decades, the combined machinery of
relaxation heuristics, preferred operators, and various en-
hancements of the very search infrastructure, have posi-
tioned heuristic forward search as a leading technique for
satisficing planning, in terms of both efficiency and robust-
ness. A prominent example is LAMA-11 (or LAMA, for
short), a heuristic-search planning system that won the se-
quential satisficing track of the International Planning Com-
petition (IPC) in 2011 (Richter, Westphal, and Helmert
2011), with its predecessor, LAMA-08, winning the respec-
tive IPC track in 2008. LAMA builds on the Fast Down-
ward system (Helmert 2006), inheriting the general structure
of Fast Downward, the translation of propositional PDDL
tasks to representations with finite-domain variables, and
the exploitation of several heuristics simultaneously via a
multi-queue search architecture. The two core features of
LAMA are its iterated search using restarts (Richter, Thayer,
and Ruml 2010), and the use of relaxation landmarks for
defining heuristic estimates and preferred operators (Richter,
Helmert, and Westphal 2008).

State-of-the-art planners these days carefully balance be-
tween search completeness and focus, between the informa-
tiveness of the heuristics and the cost of computing them. A
very interesting question is what additional techniques can
further stratify satisficing heuristic-search planning, either
in terms of coverage or in terms of plan quality, or both?
While this question is broad enough to have many positive
answers, with the years it is getting harder and harder to push
the boundary of satisficing planning. Here we investigate

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

prospects of reasoning about state-space symmetries within
satisficing heuristic-search planning. Adopting the frame-
work of goal-stable automorphisms for cost-optimal plan-
ning with A∗ (Domshlak, Katz, and Shleyfman 2012), we
show that its simple adaptation to greedier search procedures
results in substantial state pruning, as well as in transparent
improvement of discovered plan quality. Furthermore, we
show that goal-stable automorphism groups such as those
of Domshlak, Katz, and Shleyfman (2012) can be used to
improve informativeness of landmark heuristic estimates, by
aggregating information obtained during the search at differ-
ent symmetric states. We show that both these features are
very cost-effective, in the sense of robust improvement of
both standard GBFS and LAMA’s iterative search, with re-
spect to all standard performance measures.

Background
We consider planning tasks Π = 〈V ,O, s0, G, cost〉 cap-
tured by the standard SAS+ formalism (Bäckström and Klein
1991; Bäckström and Nebel 1995) with operator costs. V is
a set of finite-domain state variables, S =

∏
v∈V dom(v)

is the state space of Π, s0 is an initial state, and goal G is
a partial assignment to V ; a state s is a goal state, denoted
by s ∈ S∗, iff G ⊆ s. O is a finite set of operators, each
given by a pair 〈pre, eff〉 of partial assignments to V , called
preconditions and effects, and cost : O → R0+ is an opera-
tor cost function. Applying operator o in state s results in a
state denoted by sJoK. By the transition graph TΠ = 〈S,E〉
of Π we refer to the edge-labeled digraph induced by Π over
S: if o ∈ O is applicable in state s, then TΠ contains an
edge (s, sJoK; o) from s to sJoK, labeled with o. For a task
Π = 〈V ,O, s0, G, cost〉 and state s ∈ S, task Π(s) is ob-
tained from Π by setting the initial state to be s. Auxiliary
notation: for k ∈ N, i ∈ [k] stands for i ∈ {1, 2, . . . , k}.

The LAMA Planning System: Richter and Westphal
(2010) provide a detailed description of LAMA, and thus
here we briefly describe only the components relevant to our
presentation later on. Using GBFS and then WA∗, LAMA
employs two heuristics, each inducing its sets of preferred
operators: the delete-relaxation FF heuristic (Hoffmann and
Nebel 2001) and the landmark heuristic. The latter is based
on disjunctive landmarks of the planning task, that is, sets of
variable assignments of which one must occur at some point.



1. Offline: Find an equivalence relation ∼≤∼ΓS∗ .

2. When evaluating the state s with s ∼ s′ for some previ-
ously evaluated state s′, if g(s) ≥ g(s′), prune s as if it
were never generated. Otherwise set g, parent, and act of
s′ to those of s. If WA∗, reopen s′.

3. If a goal state s∗ is reached, (i) extract a sequence π =
〈(ε, s0), (o1, s1), . . . , (om, sm)〉 of pairs of state and ac-
tion, where sm = s∗, by the standard backchaining from
s∗ along the parent relation, setting actions by the act rela-
tion, and (ii) return trace-forward(π).

Figure 1: GBFS/WA∗ extension to ΓS∗ symmetry breaking

Given a state s and a set L of Π’s landmarks, possi-
bly annotated with some orderings, the landmark heuris-
tic estimate of s is set to the number of landmarks L(s)
yet to be achieved from s onwards (Richter, Helmert, and
Westphal 2008). When forward search reaches s for the
first time via a sequence of operators π, L(s) is set to L \
(A(s, π) \ RA(s, π)), where A(s, π) ⊆ L and RA(s, π) ⊆
A(s, π) are the sets of accepted and required again land-
marks, respectively. A landmark is accepted if it occurs at
some state along π; the set A(s, π) is memorized as state
property A(s). An accepted landmark is required again if
it does not hold in s and it is a direct precondition of some
landmark which is not accepted. From this point on, each
time s is reached via this or another operator sequence π′,
LAMA performs a “multi-path” revision of the landmarks
accepted at s by updating A(s) to A(s) ∩ A(s, π), and then
recomputing L(s) as above (Karpas and Domshlak 2009).

A∗ Symmetry Breaking with ΓS∗ : An automorphism
of a transition graph TΠ = 〈S,E〉 is a permutation σ of
the vertices S such that (s, s′; o) ∈ E iff, for some o′

with cost(o′) = cost(o), (σ(s), σ(s′); o′) ∈ E. Automor-
phisms are closed under composition, forming the automor-
phism group Aut(TΠ) of the graph. Γ ≤ Γ′ denotes that
Γ is a subgroup of Γ′. Each subgroup of automorphisms
Γ ≤ Aut(TΠ) induces an equivalence relation ∼Γ on states
S: s ∼Γ s

′ iff σ(s) = s′ for some σ ∈ Γ. For a state subset
S′ ⊆ S, the subgroup ΓS′ = {σ ∈ Γ | ∀s ∈ S′ : σ(s) ∈
S′} ≤ Γ is the stabilizer of S1, . . . , Sk with respect to Γ. Fi-
nally, a set of automorphisms Σ is said to generate a group Γ
if Γ is the fixpoint of iterative composition of the elements of
Σ. Finding a generating set of Aut(G) for a graph G is not
known to be polynomial-time, but backtracking search tech-
niques are surprisingly effective in finding generating sets
for substantial subgroups of Aut(G).

Pruning symmetries by reasoning about automorphisms
of the search space has been adopted in model check-
ing (Emerson and Sistla 2011), constraint satisfaction (Puget
1993), and planning (Rintanen 2003; Fox and Long 1999;
2002; Pochter, Zohar, and Rosenschein 2011; Domshlak,
Katz, and Shleyfman 2012). Here we build upon the recent
approach of Domshlak, Katz, and Shleyfman (2012) for ex-
ploiting state space symmetries in cost-optimal planning us-
ing A∗, referred to here for brevity as DKS.

At the focus of DKS is a property of plans and goal-
stabilizing automorphisms ΓS∗ : Let Π be a planning task,
Γ ≤ ΓS∗ , and (s0, s1, . . . , sk), (s0, s

′
1, . . . , s

′
l) be a pair of

s1

1

s2

1

s3

2

s4

1

s5

0

s6

1

s7

1

s8

2

s9

1

s10

0

Figure 2: Illustration for Proposition 1

plans for Π. If, for some i ∈ [k] and i < j ∈ [l], si = σ(s′j)
for some σ ∈ Γ, then (s0, . . . , si−1, σ(s′j), . . . , σ(s′l)) is
also a plan for Π, shorter than (s0, s

′
1, . . . , s

′
l). Based on

that, DKS extends A∗ search as follows: No matter which
of the two states si and s′j as above is generated second, it is
pruned from the search. However, if si is the state generated
second, then s′j ceases represent itself and starts representing
its ΓS∗ -symmetric counterpart si. For that “role switching”
of s′j , the parent si−1 of si “adopts” s′j as a pseudo-child and
the operator o such that si = si−1JoK is memorized. These
“state adoptions” then should be taken into account at plan
extraction; for the respective procedure, we refer the reader
to Domshlak, Katz, and Shleyfman (2012).

As the transition graph TΠ is not given explicitly, au-
tomorphisms of TΠ must be inferred from the description
of Π. Following Pochter, Zohar, and Rosenschein (2011),
the implementation of DKS by Domshlak, Katz, and Sh-
leyfman (2012) is restricted to certain “syntactic” automor-
phisms Γpdg

S∗
≤ ΓS∗ , corresponding to automorphisms of a

compact, node-colored problem description graph (PDG).
As it was first observed by Pochter, Zohar, and Rosenschein
(2011), every automorphism of Π’s PDG explicitly induces
an automorphism of TΠ, and the former can be searched for
using off-the-shelf tools for discovery of automorphisms in
explicit, colored graphs, such as BLISS (Junttila and Kaski
2007). In addition, this search can be easily restricted to
PDG automorphisms to stabilizers of S∗, that is, Γpdg

S∗
. Fi-

nally, since finding the precise equivalence relation ∼Γ in-
duced by the discovered subgroup Γ ≤ Γpdg

S∗
≤ ΓS∗ ≤

Aut(TΠ) is NP-hard (Luks 1993), it is approximated (with
a loss of precision, but not of correctness) via an equiva-
lence relation ∼≤∼Γ, defined by a heuristic local search in
S, with the generators of Γ defining state neighborhood, and
state evaluation being based on a lexicographic ordering of
S (Pochter, Zohar, and Rosenschein 2011). Note that s ∼ s′
implies s′ = σ(s) for σ ∈ Γ, which is derived from the local
search paths from s and s′ to the (same) canonical state.

Satisfying Planning with ΓS∗

Enhancing optimal A∗ planning with DKS has been shown
empirically effective, not only for reduction in expanded
nodes, but also for increasing the overall coverage (Domsh-
lak, Katz, and Shleyfman 2012). In principle, nothing pre-
vents us from adopting DKS in satisficing planning; this is
true whether the planning is based on GBFS, on WA∗, or on
an iterative combination of the two as in LAMA. However,
it is not clear whether the overhead of reasoning about sym-
metries pays off in satisficing planning, and if so, what the
right way is to incorporate this reasoning into the search pro-
cess. This question initiated our investigation, and in what



follows, we discuss both our initial findings and some sub-
sequent developments.

As a first step, we have implemented DKS within both
GBFS and WA∗ iterations of LAMA. The extension, de-
scribed in Figure 1, is independent of the heuristic func-
tion, eagerness of the state evaluation, and both preferred
operators and heuristic composition mechanisms. The only
two differences from DKS in A∗ are that (i) in GBFS, s′ is
not reopened in step 2, and (ii) to cover both lazy and eager
heuristic evaluations, step 2 considers state s not when it is
generated, but when it is about to be evaluated.

The potential value of DKS in satisficing search is
twofold. First, similarly to the effect obtained in A∗, no
two states from the same equivalence class will be expanded.
Second, the quality of the plans discovered with DKS is ex-
pected to be at least as good as, and possibly better than, the
quality of the plans discovered without DKS. In particular:

Proposition 1 Let ∼≤∼ΓS∗
, and let h be a heuristic for a

planning task Π that is invariant under∼, i.e., h(s) = h(s′)
holds for all s ∼ s′. Then, assuming perfect tie-breaking,
if π and π′ are plans for Π found by WA∗ with and without
reasoning about ∼, respectively, then cost(π) ≤ cost(π′).
Moreover, for any value of the WA∗ weight parameter, it is
possible that cost(π) < cost(π′).

The claim also holds for GBFS as the latter can be con-
sidered as WA∗ for a sufficiently large weight. To see how
DKS can actually improve the plans, consider a schematic
example of a state space in Figure 2, where s7 is the initial
state, S∗ = {s5, s10}, and the solid arcs depict the transi-
tions. There are two plans: the longer plan to s5, and the
shorter one, to s10. It is easy to see that, for i ∈ [5], we have
si ∼ si+5. Assuming heuristic values as above the state
nodes in Figure 2, GBFS with lazy evaluation may generate
the longer plan. With DKS, however, GBFS in such a case
will necessarily evaluate s8 before evaluating s4. State s8

will then be found symmetric to the previously evaluated s3,
causing the initial state s7 to “adopt” s3 (dotted arc). At the
end, when s5 is reached, the plan extracted by trace-forward
from the “plan to s5” will actually be the shorter plan to s10.

Table 1 compares the performance of LAMA’s GBFS
with and without the DKS extension on IPC benchmark
tasks; the former is denoted in Table 1 by GBFS(∼). The
experiments were performed on the Intel(R) Xeon(R) CPU
X5690 machine. Each task/planner was given a total time
limit of 30 minutes, memory limit of 2 GB, and the search
for automorphisms of its PDG was restricted to three min-
utes. The overall comparison in Table 1 is made on all IPC
tasks in which the set Σ of group generators was not found
empty; the number of such tasks per domain appears by the
name of the domain. For both planners, Table 1 summarizes
their performance in terms of task coverage, plan length1,
and node expansions. For plan length and expanded node
measures, only tasks solved by both planners are consid-
ered. Bold font indicates strictly superior performance in the
respective domains. Though the table speaks for itself, its

1Similarly to the GBFS-based first iteration of LAMA, the cost
of the actions here is ignored and they are all treated as unit-cost.

domain coverage length expansions
GBFS GBFS(∼) GBFS GBFS(∼) GBFS GBFS(∼)

airport (23) 23 23 2788 2788 138846 132445
barman-11 (20) 20 20 3749 3371 1044225 110279
depot (21) 21 22 1238 1213 1428539 355757
driverlog (20) 20 20 1289 1261 125044 123074
elevators-08 (30) 30 30 2844 2832 32987 32800
elevators-11 (20) 20 20 4633 4618 147577 143431
floortile-11 (5) 5 5 234 237 5532003 2201147
freecell (1) 1 1 9 9 9 9
grid (5) 5 5 339 331 1049 1065
gripper (20) 20 20 1360 1360 1610 1610
logistics-00 (28) 28 28 1209 1208 5940 5907
logistics-98 (35) 35 35 3827 3819 109184 108210
miconic (141) 141 141 9435 9434 49041 44061
mprime (35) 35 35 314 314 1517 1512
mystery (19) 19 19 161 161 648165 280149
nomystery-11 (13) 13 14 451 451 43952 34158
openstacks-08 (30) 30 30 4282 4282 4282 4282
openstacks-11 (15) 15 15 6063 6063 6063 6063
openstacks (11) 11 11 1348 1348 1385 1385
parking-11 (20) 20 20 1494 1501 27755 23503
pathways (23) 23 23 2881 2881 33602 33601
pegsol-08 (30) 30 30 767 762 3812975 3318054
pegsol-11 (20) 20 20 644 642 3812951 3317951
pipes-notank (44) 44 44 2980 3250 474042 292981
pipes-tank (41) 41 43 2055 1996 3654131 1209040
psr-small (27) 27 27 550 550 11695 9342
rovers (6) 6 6 176 176 611 574
satellite (35) 35 35 4363 4098 129503 107290
scanalyzer-08 (26) 26 26 925 923 8822 3647
scanalyzer-11 (19) 19 19 801 799 8258 3432
sokoban-08 (25) 25 27 6139 5569 9842674 2912204
sokoban-11 (16) 16 18 4699 4157 9635861 2796591
tpp (29) 29 29 3582 3530 37389 32330
transport-08 (29) 30 29 2901 2824 97669 111414
transport-11 (15) 16 16 3343 3270 185336 196007
visitall-11 (20) 20 20 28776 28702 132939 132937
woodwork-08 (20) 20 20 996 988 176549 169648
woodwork-11 (4) 4 4 316 315 94880 93351
zenotravel (19) 19 19 731 723 9072 9007

TOTAL 962 969 114692 112756 41508132 18360248

Table 1: Performance of GBFS with and without DKS in
terms of coverage, plan length, and expanded nodes.

overall message is that, across all the three measures, adopt-
ing DKS almost consistently improved GBFS performance.
On the tasks solved by both planners, the total number of
expanded nodes was cut by more than half, and the quality
of the plans was improved in 24 out of 37 domains (and neg-
atively affected only in 3 domains), with the most profound
improvement in plan length being in the Sokoban domain.

Landmark Heuristic and ΓS∗

While the results show the pros of employing DKS in sat-
isficing search, pruning symmetric states can also be detri-
ment if the heuristics in use are not invariant under ∼ΓS∗

,
as is the case with both the FF and landmark heuristics used
by LAMA. It is always possible that, on the states of some
equivalence class, the heuristic is most inaccurate on the
state that is evaluated first by the search procedure. Given
that the rest of that equivalence class will be pruned, it is pos-
sible that the pruning takes the planning into a much longer
search than what it would undergo without pruning. At a
first view, a repair suggests itself almost immediately: in
step 2, before discarding state s, compute h(s) and use it
to update h(s′). The difficulty with that repair is twofold.
First, even if both h(s) and h(s′) are computed, which of
them should be used for s′ is somewhat clear only if h is ad-
missible, while most of the heuristics used to date in satisfic-
ing planning are inadmissible. Second, whether the heuris-
tic evaluation is lazy or eager, computing heuristic values
for pruned states eliminates part of the value that symmetry



domain Lazy A∗ (expansions) LAMA (IPC quality score)
orig I II III orig I II III

airport 839535 786870 786870 786870 23.00 23.00 23.00 23.00
barman-11 NA NA NA NA 18.75 19.81 19.81 19.81
depot 4070390 2335741 2137793 2178454 20.56 21.46 21.77 21.66
driverlog 697132 401819 399984 399922 20.00 19.97 20.00 20.00
elevators-08 2302384 1157581 1149631 1152269 29.47 28.90 28.90 28.90
elevators-11 NA NA NA NA 19.77 19.85 19.85 19.85
floortile-11 2752081 1815829 1817070 1815879 4.58 4.97 4.97 4.97
freecell 80 53 53 53 1.00 1.00 1.00 1.00
grid 3139 3139 3139 3139 5.00 4.98 4.98 4.98
gripper 2438675 294 294 294 20.00 20.00 20.00 20.00
logistics00 5427655 3639363 3639362 3639363 27.98 27.92 27.92 27.92
logistics98 2669671 315109 315106 315095 34.85 34.94 34.96 34.91
miconic 8855004 4647164 4655993 4655993 140.08 140.69 140.71 140.71
mprime 8007 7595 7595 7595 35.00 35.00 35.00 35.00
mystery 541656 219509 219509 219509 19.00 19.00 19.00 19.00
nomystery-11 1600874 884165 884168 879411 12.97 14.00 13.00 13.00
openstacks-08 18839 17399 17399 17399 29.85 29.87 30.00 30.00
openstacks-11 76249 71155 71155 71155 14.86 14.81 14.92 14.94
openstacks 3394 888 888 888 11.00 11.00 11.00 11.00
parking-11 209682 172025 178416 172025 19.70 19.93 19.73 19.97
pathways 1212690 1094981 1094981 1094981 23.00 23.00 23.00 23.00
pegsol-08 399516 348756 348592 348758 29.82 29.25 29.25 29.25
pegsol-11 395551 344983 344814 344984 19.82 19.25 19.25 19.25
pipes-notank 6124355 2403721 2400164 2402995 43.49 43.75 43.75 43.75
pipes-tank 6837018 1108446 1112253 1113753 36.76 42.73 42.47 43.73
psr-small 321959 119794 119794 119794 27.00 27.00 27.00 27.00
rovers 59436 57544 57544 57544 6.00 6.00 6.00 6.00
satellite 418675 191257 277613 277613 34.28 34.96 35.00 35.00
scanalyzer-08 1558042 16618 16622 16618 24.97 25.19 25.16 25.11
scanalyzer-11 1546069 15547 15548 15547 17.94 17.78 17.86 18.23
sokoban-08 7597615 4412720 4339384 4376488 24.00 27.00 27.00 27.00
sokoban-11 7243596 4156083 4102072 4119717 15.00 17.98 18.00 18.00
tpp 97675 19914 19914 19914 28.80 28.67 28.67 28.67
transport-08 927243 278964 280472 280763 29.82 28.29 29.52 29.52
transport-11 NA NA NA NA 15.94 15.60 15.60 14.55
visitall-11 NA NA NA NA 19.99 19.99 19.99 19.99
woodwork-08 63652 31363 31363 31363 19.76 20.00 20.00 20.00
woodwork-11 NA NA NA NA 3.99 4.00 4.00 4.00
zenotravel 733892 626391 626668 626485 18.74 19.00 19.00 19.00

TOTAL 68051431 31702780 31472223 31562630 946.54 960.53 961.06 961.68

Table 2: Lazy A∗ and LAMA, with and without multi-state
inference for the landmark heuristic.

breaking brings to the search process in the first place.
We now show that, at least with the landmark heuris-

tic, heuristic-related information between symmetric states
can be communicated in a meaningful and cost-effective
way. The basic idea corresponds to extending the multi-
path inference of landmarks to “multi-state” inference be-
tween the symmetric states. Recall that each σ ∈ Γpdg

S∗
maps variable assignments to variable assignments. Let L
be a set of disjunctive landmarks for Π, and let Γ ≤ Γpdg

S∗
.

For each landmark ϕ ∈ L, and each σ ∈ Γ, by σ(ϕ)
we denote the set of variable assignments obtained by ap-
plying σ to each of the variable assignments in ϕ, that is,
σ(ϕ) = {〈σ(v), σ(d)〉 | 〈v, d〉 ∈ ϕ}. Similarly, by σ(L′)
for L′ ⊆ L, we denote the set {σ(ϕ) | ϕ ∈ L}.

Proposition 2 Let Π be a planning task, s, s′ ∈ S, and Γ ≤
Γpdg
S∗

. If s′ = σ(s) for some σ ∈ Γ, and ϕ is a landmark for
Π(s), then σ(ϕ) is a landmark for Π(s′).

The proof of Proposition 2 is almost immediate from the
definitions of Γpdg

S∗
and landmarks. Note also that Proposi-

tion 2 is independent of how landmarks for different states
of Π are discovered in the first place. In particular, land-
marks for Π(s) can either be restricted, as in LAMA, to
the landmarks for Π ≡ Π(s0), or discovered specifically
for Π(s) (Helmert and Domshlak 2009; Bonet and Helmert
2010). In LAMA extended with DKS as in Figure 1, at step

2 we can update the set of landmarks L(s′) to be achieved
from s onwards to L(s′) ∪ σ(L(s)). That is, if the search
starts with a set L of landmarks for Π, then the sets of yet to
be achieved landmarks L(s) for states s of Π are no longer
restricted to subsets of L, but to subsets of a (possibly much
larger) set {σ(ϕ) | ϕ ∈ L, σ ∈ Γpdg

S∗
} ⊇ L.

First, landmarks of state s reached by LAMA are com-
puted at a very low effort from the landmarks of its parent
state and the respective operator. Hence, the computational
overhead of the multi-state inference of landmarks between
the symmetric states remains low. Second, updating the
heuristic estimate of the equivalence class representative s′
this way results in a more accurate estimate of s′, subject to
validity of the assumption that knowing more landmarks of
Π(s′) results in more accurate estimates of the goal distance
from s′. This assumption does not hold for the landmark
heuristic in general (or otherwise the latter would be admis-
sible), but it is still the core assumption behind the land-
mark heuristic, similarly to how the “shorter relaxed plans
are more accurate” assumption underlies the FF heuristic.
Hence, multi-state inference of landmarks between the sym-
metric states is at least fully consistent with the concept of
LAMA’s landmark heuristic.

While Proposition 2 allows for inferring landmarks for
Π(s) that are not (or are not known to be) landmarks of Π,
in our current extension of LAMA we restrict our inference
to the initially discovered landmarks L of Π. The resulting
modification of step 2 in Figure 1 is summarized by the fol-
lowing corollary of Proposition 2:

Corollary 3 Let L be a set of landmarks for a planning task
Π, Γ be a subgroup of Γpdg

S∗
, and ϕ ∈ L be a landmark of Π.

For any pair of states s and s′, if s′ = σ(s) for some σ ∈ Γ,
ϕ ∈ L(s), and σ(ϕ) ∈ L, then σ(ϕ) ∈ L(s′).

Denoting the basic DKS in Table 2 by (I), we denote by
(II) DKS with the landmark heuristic enhanced with the
above corollary. We have also implemented a more re-
stricted, but also less costly, version of (II), denoted by (III),
which relies only on landmarks in L that are fixpoints of
the subgroup Γ ≤ Γpdg

S∗
in use. Note that (II) and (III)

bring value only for states that can possibly be expanded af-
ter their landmarks are updated by the inference. Thus, the
impact of these approaches decreases with the search greed-
iness, being the smallest for theGBFS iteration. Hence, first
we have separately evaluated the marginal impact of II and
III within A∗ with lazy evaluation, which constitutes the last
possible and the least greedy iteration of LAMA. The per-
formance in terms of expanded nodes is shown in columns
2-5 of Table 2. Note that (I) always outperforms the base-
line, and it is outperformed by both (II) and (III). Second,
columns 6-9 show the IPC quality score performance of the
baseline (LAMA), as well as its extensions to (I), (II), and
(III), within the LAMA’s iterative search process. Here as
well, all three extensions are shown to be cost-effective.

Acknowledgments. The work of Domshlak and Shleyf-
man was partially supported by ISF grant 1045/12 and the
Technion-Microsoft E-Commerce Research Center.



References
Bäckström, C., and Klein, I. 1991. Planning in polynomial
time: The SAS-PUBS class. Comp. Intell. 7(3):181–197.
Bäckström, C., and Nebel, B. 1995. Complexity results for
SAS+ planning. Comp. Intell. 11(4):625–655.
Bonet, B., and Helmert, M. 2010. Strengthening landmark
heuristics via hitting sets. In ECAI, 329–334.
Domshlak, C.; Katz, M.; and Shleyfman, A. 2012. En-
hanced symmetry breaking in cost-optimal planning as for-
ward search. In ICAPS, to appear.
Emerson, E. A., and Sistla, A. P. 2011. Symmetry and
model checking. Formal Methods in System Design 9(1-
2):105–131.
Fox, M., and Long, D. 1999. The detection and exploita-
tion of symmetry in planning problems. In IJCAI, 956–961.
Fox, M., and Long, D. 2002. Extending the exploitation of
symmetries in planning. In AIPS, 83–91.
Helmert, M., and Domshlak, C. 2009. Landmarks, critical
paths and abstractions: What’s the difference anyway? In
ICAPS, 162–169.
Helmert, M. 2006. The Fast Downward planning system.
JAIR 26:191–246.
Hoffmann, J., and Nebel, B. 2001. The FF planning sys-
tem: Fast plan generation through heuristic search. JAIR
14:253–302.
Junttila, T., and Kaski, P. 2007. Engineering an efficient
canonical labeling tool for large and sparse graphs. In
ALENEX, 135–149.
Karpas, E., and Domshlak, C. 2009. Cost-optimal planning
with landmarks. In IJCAI, 1728–1733.
Luks, E. M. 1993. Permutation groups and polynomial-
time computation. In Groups and Computation, DIMACS
Series in Disc. Math. and Th. Comp. Sci., volume 11. 139–
175.
Pochter, N.; Zohar, A.; and Rosenschein, J. S. 2011. Ex-
ploiting problem symmetries in state-based planners. In
AAAI.
Puget, J.-F. 1993. On the satisfiability of symmetrical con-
strained satisfaction problems. In ISMIS, 350–361.
Richter, S., and Westphal, M. 2010. The LAMA plan-
ner: Guiding cost-based anytime planning with landmarks.
JAIR 39:127–177.
Richter, S.; Helmert, M.; and Westphal, M. 2008. Land-
marks revisited. In AAAI, 975–982.
Richter, S.; Thayer, J. T.; and Ruml, W. 2010. The joy of
forgetting: Faster anytime search via restarting. In ICAPS,
137–144.
Richter, S.; Westphal, M.; and Helmert, M. 2011. LAMA
2008 and 2011 (planner abstract). In IPC 2011, Determin-
istic Part. 50–54.
Rintanen, J. 2003. Symmetry reduction for SAT represen-
tations of transition systems. In ICAPS, 32–41.


