
On Satisficing Planning with Admissible Heuristics

Roei Bahumi and Carmel Domshlak and Michael Katz
Faculty of Industrial Engineering & Management

Technion, Israel

Abstract

Heuristic forward search is at the state of the art of se-
quential satisficing planning. The heuristics in use are,
however, inadmissible, and thus give no guarantees on
the quality of the obtained solution. Although there is
no theoretical limitation in adopting admissible heuris-
tics for satisficing planning, in practice there are sev-
eral obstacles, such as lack of definition of one impor-
tant feature, called helpful actions or preferred opera-
tors. In this paper we present a definition of preferred
operators for the fork-decomposition abstraction heuris-
tics and perform an extensive empirical evaluation on a
range of domains from International Planning Competi-
tions. In addition, we examine a mixed setting of using
fork-decomposition heuristics with preferred operators
derived from delete-relaxation based hFF machinery.

Introduction
Heuristic search, either through progression in the space
of world states or through regression in the space of sub-
goals, is a common and successful approach to classi-
cal planning. These days, most leading planning sys-
tems for cost-oriented classical planning adopt the for-
ward search approach, as well as several enhancements
such as helpful actions or preferred operators (Hoff-
mann & Nebel, 2001; Helmert, 2006) and deferred eval-
uation (Helmert, 2006). The notion of helpful actions
refers to the actions that lead toward a solution of a
simplified task (Hoffmann & Nebel, 2001), and thus
are preferred over others. Deferred evaluation is an-
other enhancement, allowing to evaluate the node only
when it is expanded, and not when generated. Together,
these enhancements are the cornerstone of several state-
of-the-art planning systems (Richter & Helmert, 2009).
All these systems adopt this or another inadmissible
(but purportedly well-informed) heuristic, both for node
evaluation and for deriving preferred operators. The
reason for adopting the same heuristic for both is sim-
ple - the heuristic calculation is usually allowing for de-
riving preferred operators in little or no additional ef-
fort. The fact that inadmissible heuristics rule the area

of satisficing planning should probably be attributed to
two factors. First, the major breakthroughs in devel-
oping domain-independent admissible heuristics have
been achieved only in the recent few years. Second, as
the focus of these developments was on optimal plan-
ning, no mechanisms for deriving preferred operators
in the scope of these admissible heuristics have been
suggested.

With the recent substantial advances in admissible
heuristics for cost-optimal classical planning, employ-
ing them not only in optimal but also in satisficing
search became appealing. In this paper we show how
to efficiently compute the set of preferred operators for
fork-decomposition abstraction heuristics. We then em-
pirically evaluate the efficiency of satisficing planning
with these admissible heuristics. We adopt the deferred
evaluation approach and investigate various settings of
preferred operators, both from the fork-decomposition
abstractions, as well as from the delete-relaxation based
mechanism of hFF (Hoffmann & Nebel, 2001) that is in
use by most state-of-the-art satisficing planners.

Preliminaries
We consider classical planning tasks corresponding to
state models with a single initial state and only deter-
ministic actions. Specifically, we consider state models
captured by the SAS+ formalism (Bäckström & Nebel,
1995) with nonnegative action costs. Such a planning
task is given by a quintuple Π = 〈V,A, I,G, cost〉,
where:

• V is a set of state variables, with each v ∈ V being
associated with a finite domain D(v). For a subset of
variables V ′ ⊆ V , we denote the set of assignments
to V ′ by D(V ′) = ×v∈V ′D(v). Each complete as-
signment to V is called a state, and S = D(V) is the
state space of Π. I is an initial state. The goal G is
a partial assignment to V ; a state s is a goal state iff
G ⊆ s.

• A is a finite set of actions. Each action a is a pair
〈pre(a), eff(a)〉 of partial assignments to V called

preconditions and effects, respectively. By Av ⊆ A
we denote the actions affecting the value of v. cost :
A → R0+ is a real-valued, nonnegative action cost
function.

For a partial assignment p, V(p) ⊆ V denotes the sub-
set of state variables instantiated by p. In turn, for any
V ′ ⊆ V(p), by p[V ′] we denote the value of V ′ in p;
if V ′ = {v} is a singleton, we use p[v] for p[V ′]. For
any sequence of actions ρ and variable v ∈ V , by ρ↓v
we denote the restriction of ρ to actions changing the
value of v; that is, ρ↓v is the maximal subsequence of ρ
consisting only of actions in Av .

An action a is applicable in a state s iff s[v] =
pre(a)[v] for all v ∈ V(pre(a)). The set of all appli-
cable in state s actions is denoted by A(s). Applying
a changes the value of v ∈ V(eff(a)) to eff(a)[v]. The
resulting state is denoted by sJaK; by sJ〈a1, . . . , ak〉K
we denote the state obtained from sequential applica-
tion of the (respectively applicable) actions a1, . . . , ak
starting at state s. Such an action sequence is an s-
plan if G ⊆ sJ〈a1, . . . , ak〉K, and it is a cost-optimal
(or, in what follows, optimal) s-plan if the sum of its
action costs is minimal among all s-plans. The pur-
pose of (optimal) planning is finding an (optimal) I-
plan. For a pair of states s1, s2 ∈ S, by cost(s1, s2) we
refer to the cost of a cost-optimal plan from s1 to s2;
h∗(s) = mins′⊇G cost(s, s′) is the custom notation for
the cost of the optimal s-plan in Π. Finally, important
roles in what follows are played by a pair of standard
graphical structures induced by planning tasks.
• The causal graph CG(Π) of Π is a digraph over

nodes V . An arc (v, v′) is in CG(Π) iff v 6= v′

and there exists an action a ∈ A such that (v, v′) ∈
V(eff(a)) ∪ V(pre(a)) × V(eff(a)). In this case, we
say that (v, v′) is induced by a. By succ(v) and
pred(v) we respectively denote the sets of immedi-
ate successors and predecessors of v in CG(Π).

• The domain transition graph DTG(v,Π) of a vari-
able v ∈ V is an arc-labeled digraph over the
nodes D(v) such that an arc (ϑ, ϑ′) labeled with
pre(a)[V \ {v}] and cost(a) exists in the graph iff
both eff(a)[v] = ϑ′, and either pre(a)[v] = ϑ or
v 6∈ V(pre(a)).
Heuristic functions are used by informed-search pro-

cedures to estimate the cost (of the cheapest path) from
a search node to the nearest goal node. Our focus here
is on additive implicit abstraction heuristics (Katz &
Domshlak, 2010b, 2010a), that are based on two frag-
ments of tractable cost-optimal planning for tasks with
fork and inverted-fork structured causal graphs. In gen-
eral, for a planning task Π = 〈V,A, I,G, cost〉 over
states S, an additive implicit abstraction of Π is de-
noted by a set of tripletsAE = {〈Πi, αi, βi〉}mi=1, where
Πi = 〈Vi, Ai, Ii, Gi, costi〉 over states Si is called an
abstract task, αi : S 7→ Si is the state abstraction func-

tion, and βi : Ai 7→ A is the function connecting the
abstract actions to their origin. The state transition sys-
tem of Πi is an abstraction of the state transition system
of Π, and the admissibility of the additive result is ob-
tained by emposing the additive action-cost partition-
ing constraint

∀a ∈ A :
m∑
i=1

∑
a′∈β−1

i (a)

costi(a′) ≤ cost(a). (1)

Dominating Actions
Let Π = 〈V,A, I,G, cost〉 be a planning task over the
states S. For each state s ∈ S, the set of dominating ac-
tions for s, denoted by PrefΠ(s), is the set of all actions
a ∈ A applicable in s, each starting some cost-optimal
s-plan, that is,

PrefΠ(s) = {a ∈ A(s) | h∗(s) = cost(a) +h∗(sJaK)}.

The notion of dominating actions complements the
notion of useless actions (Wehrle, Kupferschmid, &
Podelski, 2008); deciding whether an action is useless
is in general as hard as planning itself.

Considering the family of abstraction heuristics, note
that computing dominating actions for explicit abstrac-
tions (such as projection/pattern and merge-and-shrink
abstractions) can straightforwardly be accomplished
in time polynomial in the size of these abstractions.
Next we show that the same holds for implicit fork-
decomposition abstractions, though the corresponding
procedures are not that straightforward.

Theorem 1 Let Π = 〈V,A, I,G, cost〉 be a planning
task with a fork causal graph rooted at a binary-valued
variable r. For any set of states S′ ⊆ S, the time and
space complexity of computing the sets PrefΠ(s) for all
states s ∈ S′ is, respectively, O(d3 · |V |+ |Ar|+ |S′| ·
d · |V |) and O(d2 · |A|), where d = maxv D(v).

Proof: The proof is by a slight modification of the
polynomial-time algorithm for computing h∗(s) for a
state s of such a task Π used in the proof of Theorem 7
(Tractable Forks) by Katz and Domshlak (2010b).

In what follows, for each of the two root’s values
ϑ ∈ D(r), ¬ϑ denotes the opposite value 1 − ϑ,
σ(r|ϑ) denotes the interchanging sequence of values
from D(r) starting with ϑ, �[σ(r|ϑ)] denotes the set
of all valid prefixes of σ(r|ϑ), and DTGϑv denotes sub-
graph of DTG(v,Π) obtained from the latter by remov-
ing arcs labelled with ¬ϑ.
(1) For each of the two values ϑr ∈ D(r) of the root

variable, each leaf variable v ∈ V \ {r}, and each
pair of values ϑ, ϑ′ ∈ D(v), let pϑ,ϑ′;ϑr be the
cost of the cheapest sequence of actions changing
v from ϑ to ϑ′ provided r : ϑr. In parallel, let
Aϑ,ϑ′;ϑr be the set of all possible first actions of

2

such sequences. Both {pϑ,ϑ′;ϑr} and {Aϑ,ϑ′;ϑr}
for all the leaves v ∈ V \ {r} can be computed by
a straightforward variant of the all-pairs-shortest-
paths, Floyd-Warshall algorithm on DTGϑrv in time
O(d3|V |).

(2) For each leaf variable v ∈ V \ {r}, ϑ ∈ D(v),
1 ≤ i ≤ d + 1, and ϑr ∈ D(r), let g̃ϑ;i(ϑr) be the
cost of the cheapest sequence of actions changing
ϑ to G[v] provided the value changes of r induce a
0/1 sequence of length i starting with ϑr. In paral-
lel, let Ãϑ;i(ϑr) be the set of first actions of all such
sequences, provided that these actions prevailed ei-
ther by ϑr or nothing at all. The set {g̃ϑ;i(ϑr)} is
given by the solution of the recursive equation

g̃ϑ;i(ϑr) =
pϑ,G[v];ϑr , i = 1

min
ϑ′

[
pϑ,ϑ′;ϑr+
g̃ϑ′;i−1(¬ϑr)

]
, 1 < i ≤ δϑ

g̃ϑ;i−1(ϑr), δϑ < i ≤ d+ 1

,
(2)

which can be solved in time O(d3|V |), and then,
Ãϑ;i(ϑr) can be obtained recursively in time
O(d3|V |) as

Ãϑ;i(ϑr) =


Aϑ,G[v];ϑr , i = 1⋃
ϑ′∈Mϑ;i(ϑr)

Aϑ,ϑ′;ϑr , 1 < i ≤ δϑ

Ãϑ;i−1(ϑr), δϑ < i ≤ d+ 1

,

where

Mϑ;i(ϑr) = {ϑ′ | g̃ϑ;i(ϑr) = pϑ,ϑ′;ϑr+g̃ϑ′;i−1(¬ϑr)}.

Note that this equation is independent of the evaluated
state s, and yet {g̃ϑ;i(ϑr)} allow for computing h∗(s)
for a given state s via

h∗(s) = min
σ∈�[σ(r|s[r])]

 cost(σ) +
∑

v∈V \{r}

g̃s[v];|σ|(s[r])


(3)

where cost(σ) =
∑|σ|
i=2 cost(aσ[i]), with aσ[i] ∈ A be-

ing some cheapest action changing the value of r from
σ[i−1] to σ[i]. Let M(s) ⊆ �[σ(r | s[r])] denote the set
of all sequences that obtain the minimum in Eq. 3. Now,
if changing the root value first can be a part of some op-
timal plan, that is, h∗(s) = h∗(sJaσ[2]K) + cost(aσ[2]),
then the respective action is in PrefΠ(s). Note that using
Eq. 2 we can rewrite this condition as g̃s[v];|σ|(s[r]) =
g̃s[v];|σ|−1(¬s[r]) for all v ∈ V \ {r}. Let

M(σ, s) =
⋂

v∈V \{r}

{aσ[2] | g̃s[v];|σ|(s[r]) = g̃s[v];|σ|−1(¬s[r])}

denote the set of all such cheapest actions. Thus,
PrefΠ(s) can be computed as follows.

PrefΠ(s) =
⋃

σ∈M(s)

M(σ, s) ∪
⋃

v∈V \{r}

Ãs[v];|σ|(s[r])

 .
(4)

The only computation that has to be performed per
search node, is the final minimization over �[σ(r|s[r])]
in Eq. 3 and the union over M(s) in Eq. 4, and those
are the lightest parts of the whole algorithm anyway.
The major computations, notably those of {pϑ,ϑ′;ϑr},
{Aϑ,ϑ′;ϑr}, {g̃ϑ;i(ϑr)}, and {Ãϑ;i(ϑr)}, can be per-
formed offline and shared between the evaluated states.
The space required to store this information isO(d2|A|)
as it contains only aO(|Av|) amount of information per
pair of values of each variable. The time complexity
of the offline computation is O(d3|V |+ |Ar|); the |Ar|
component stems from precomputing the costs cost(σ).
The time complexity of the online computation per state
isO(d|V |); |V | comes from the internal summation and
d comes from the size of �[σ(r|s[r])].

Theorem 2 Let Π = 〈V,A, I,G, cost〉 be a plan-
ning task with an inverted fork causal graph with sink
r and |D(r)| = b = O(1). For any set of states
S′ ⊆ S, the time and space complexity of comput-
ing the sets PrefΠ(s) for all states s ∈ S′ is, re-
spectively, O(b|V ||Ar|b−1 + d3|V | + |S′||V ||Ar|b−1)
and O(|V ||Ar|b−1 + d2|V |), respectively, where d =
maxv D(v).

Proof: Similarly to the proof of Theorem 1, the
proof of Theorem 2 is by a slight modification of the
polynomial-time algorithm for computing h∗(s) used
for the proof of Theorem 8 (Tractable Inverted Forks)
by Katz and Domshlak (2010b).

(1) For each parent variable v ∈ V \ {r}, and each
pair of its values ϑ, ϑ′ ∈ D(v), let pϑ,ϑ′ be the cost
of the cheapest sequence of actions changing ϑ to
ϑ′. In parallel, let Aϑ,ϑ′ be the set of all possible
first actions of such sequences. Both {pϑ,ϑ′} and
{Aϑ,ϑ′} can be computed using the Floyd-Warshall
algorithm on the domain transition graph of v in
time O(d3|V |).

(2) For each ϑr ∈ D(r) and each cycle-free path
π = 〈a1, . . . , am〉 from ϑr to G[r] in DTG(r,Π),
let aπ = a1 be the first action of that path, and let a
“proxy” state sπ be

sπ[v] =


ϑr, v = r

G[v], v 6∈
⋃m
i=1 V(pre(ai))

pre(ai)[v], i = argminj {v ∈ V(pre(aj))}
,

that is, the nontrivial part of sπ captures the first val-

3

ues of V \ {r} required along π.1 Given that, let gπ
be the cost of the cheapest plan from sπ in Π based
on π, and the cheapest paths {pϑ,ϑ′} computed in
(1). Each gπ can be computed as

gπ =
m∑
i=1

cost(ai) +
∑

v∈V \{r}

pprei[v],prei+1[v]

 ,
where, for each v ∈ V \ {r}, and 1 ≤ i ≤ m+ 1,

prei[v] =


sπ[v], i = 1
G[v], i = m+ 1 and v ∈ V(G)
pre(ai)[v], 2 ≤ i ≤ m and v ∈ V(pre(ai))
prei−1[v], otherwise

.

Storing the triplets (gπ, sπ, aπ) accomplishes the
offline part of the computation.

(3) Now, given a search state s, we can compute

h∗(s) = min
π s.t.

sπ [r]=s[r]

gπ +
∑

v∈V \{r}

ps[v],sπ [v]

, (5)

storing the paths obtaining the minimum. Let M(s)
be the set of such paths, and for each path π, let
M(s, π) = {aπ | aπ ∈ A(s)} denote the set con-
taining the first action of such path, if it is applica-
ble in state s. Thus, PrefΠ(s) can be computed as
follows.

PrefΠ(s) =
⋃

π∈M(s)

M(s, π) ∪
⋃

v∈V \{r}

As[v],sπ [v]

 .
(6)

The number of cycle-free paths to G[r] in DTG(r,Π) is
Θ(|Ar|b−1), and gπ for each such path π can be com-
puted in time O(b|V |). Hence, the overall offline time
complexity is O(b|V ||Ar|b−1 + d3|V |), and the space
complexity (including the storage of the proxy states sπ
and the first actions aπ) is O(|V ||Ar|b−1 + d2|A|). The
time complexity of the online computation per state via
Eq. 5 is O(|V ||Ar|b−1); |V | comes from the internal
summation and |Ar|b−1 from the upper bound on the
number of cycle-free paths from s[r] to G[r].

Experimental Evaluation
We have evaluated satisficing planning with fork-
decomposition heuristics, using iterative lazy weighted
A∗ (Richter & Helmert, 2009) with weight schema 100,
10, 5, 3, 2, 1, with deferred evaluation and preferred
operators. This setting was compared to two heuristic-
search baselines, both using the same search scheme as

1For ease of presentation, we omit here the case where v
is required neither along π, nor by the goal; such variables
should be simply ignored when accounting for the cost of π.

ours, and employing the FF heuristic. The first baseline
used no preferred operators at all. The second one used
preferred operators from the FF heuristic (Hoffmann &
Nebel, 2001). All the planners were run on one core of
a 2.33GHz Intel Q8200 CPU with 4 GB memory, us-
ing 2 GB memory limit and 30 minute timeout. The
summary of results is depicted in Table 1. The scoring
method evaluates plan costs accordingly to the method
used in International Planning Competition (IPC-2008).

Columns 2 and 3 depict the results for searching
with the FF heuristic, without and with preferred oper-
ators. The evaluation covered three fork-decomposition
heuristics, namely forks only (hF), inverted forks only
(hI); and both forks and inverted forks. (hFI). In order
to overcome various issues caused by the 0-cost actions
in IPC 2008 domains, in these domains for the purpose
of heuristic evaluation all action costs were increased
by 1.

The first evaluation was performed with no preferred
operators, and the results are depicted in columns 4, 9,
and 14, respectively. Then, preferred operators from
these heuristics were added (columns 5, 10, and 15).
Our first observation is that preferred operators from the
implicit abstractions are not always helpful. In fact, for
both hF and hFI, in most of the domains, the plans ob-
tained without any preferred operators are shorter than
with all preferred operators obtained from these abstrac-
tions. Note that the abstract operators change the value
of a variable with either in-degree 0 or out-degree 0.
In the latter case the goal value of the variable is al-
ways defined, while in sooner it is not always the case.
Thus, some of these operators may be more helpful in
guidance towards the goal than other. In order to check
this hypothesis, we evaluated two additional settings,
one taking only preferred operators changing the value
of some variable with in-degree 0 in some abstraction
(columns 6, 11, and 16), and another one taking only
preferred operators changing the value of some vari-
able with out-degree 0 in some abstraction (columns 7,
12, and 17). This setting changes the picture for both
hF and hFI heuristics, yet not for hI heuristic where
the picture is reverse. In any case, all these settings of
preferred operators in most of the domains are outper-
formed by FF heuristic with its preferred operators. One
possible reason for that is that the abstractions do not
cover all planning task variables, and usually concen-
trated around those with goal values defined. Hence,
the guidance of the actions obtained from these abstrac-
tions is greedy towards achieving the goals, and disre-
gards other variables and intermediate goals.

In order to evaluate this assumption, we evaluated
employing the fork-decomposition heuristics with pre-
ferred operators derived from the relaxed plans respon-
sible for the FF heuristic values. The respective results
are shown in columns 8, 13, and 18. Although the per-
node evaluation obviously becomes more expensive, the

4

domain hFF hF hI hFI

No Pref All Pref No Pref All Pref Up Pref Lo Pref FF Pref No Pref All Pref Up Pref Lo Pref FF Pref No Pref All Pref Up Pref Lo Pref FF Pref
blocks-aips2000 34.81 34.24 32.56 30.33 30.69 31.34 32.84 31.88 31.32 31.32 32.1 32.67 31.27 29.69 29.91 30.24 32.06
elevators-strips-seq-sat 27.26 29.32 11.2 9.87 16.94 14.32 12.74 8.33 8.58 8.58 8.28 13.57 24.29 19.74 20.62 24.81 26.43
logistics-AIPS98 22.55 32.79 20.52 14.3 18.53 20.08 28.28 20.15 26.96 18.77 30.88 31.35 20.24 14.18 18.7 21.89 28.49
openstacks-strips-seq-sat 29.52 29.27 29.03 25.62 27.94 21.74 29.07 23.55 23.99 23.99 22.73 29.13 29.08 25.02 28.19 21.1 28.96
pegsol-strips-seq-sat 30 29.85 29.95 28.86 29 28.77 29 29.95 29 29 29.95 29.95 29.95 28.67 28.75 29.53 29.9
woodworking-strips-seq-sat 12.43 27.72 5 6.89 5 6.89 13.11 5 6 6 5 15.67 5 6.97 5 7.74 13.08
logistics-aips2000 27.15 27.76 27.96 27.57 27.91 27.26 27.78 26.91 27.33 26.37 26.75 27.29 27.22 27.52 26.58 26.76 27.42
openstacks-adl-seq-sat 29.14 29.18 23.73 20.6 22.29 20.6 29.22 13.8 14.33 14.33 13.8 15 25.48 19.19 23.94 19.19 29.15
parcprinter-strips-seq-sat 14 14 12 22.63 20.73 20 22.8 13 26.95 26.95 13 23.93 13 25.97 26.97 26 28.88
scanalyzer-strips-seq-sat 24.38 25.15 22.53 21.35 21.81 22.91 21.65 22.36 25.33 25.33 22.25 22.28 21.43 21.63 21.7 22.98 22.47
sokoban-strips-seq-sat 26.83 26.88 23 22.53 24.98 20.62 23.93 28.83 27.73 27.73 28.83 27.96 24.75 21.94 23.96 21.89 24.91
transport-strips-seq-sat 12.16 18.29 19.44 14.4 17.44 15.42 19.67 8.3 8.34 8.34 8.3 8.94 13.22 11.93 12.61 10.87 17.82

290.23 324.45 256.91 244.95 263.25 249.94 290.08 232.06 255.87 246.72 241.87 277.74 264.93 252.43 266.94 263.02 309.58

Table 1: A summary of the experimental results: plan cost. Per planner/domain, the cost of the best found plan is given
by the sum of ratios over all tasks. Boldfaced results indicate the best performance within the corresponding domain.
The last row summarizes the ratio over all domains.

domain hFF hF hI hFI

No Pref All Pref No Pref All Pref Up Pref Lo Pref FF Pref No Pref All Pref Up Pref Lo Pref FF Pref No Pref All Pref Up Pref Lo Pref FF Pref
blocks-aips2000 9.58 32.52 5.72 3.97 3.63 8.61 27.06 2.35 1.64 1.64 2.35 15.68 3.9 3.5 2.8 9.87 24.63
elevators-strips-seq-sat 2.05 25.27 0.59 0.13 0.29 0.76 10.4 0.04 0.08 0.08 0.04 3.08 1.55 0.49 0.24 1.42 24.63
logistics-AIPS98 2.57 34.16 1.31 0.9 0.68 2.31 18.3 0.75 1.6 0.51 7.33 23.28 1.03 1.75 0.5 4.68 21.4
pegsol-strips-seq-sat 15.32 20.99 3.62 4.1 4.39 4.05 13.16 3.54 3.77 3.77 3.54 10.75 5.27 3.63 3.77 5.13 13.72
sokoban-strips-seq-sat 20.41 12.78 3.24 4.27 4.28 3.78 9.89 7.14 8.03 8.03 7.14 13.89 6.61 8.08 8.1 7.25 11.28
woodworking-strips-seq-sat 2.45 26.47 1.36 3.15 2.22 3.97 6.12 0.95 3.46 3.46 1.07 7.9 1.39 3.14 2.27 4.87 6.21
logistics-aips2000 9.37 22.63 13.21 10.66 3.92 15.33 24.89 8.19 15.71 3.02 9.77 22.78 8.92 21.09 2.11 9.95 22.89
openstacks-adl-seq-sat 14.04 13.75 4.05 3.16 5.34 3.16 29.74 0.58 0.64 0.64 0.58 3.19 2.82 2.55 3.21 2.55 7.41
openstacks-strips-seq-sat 8.53 8.52 18.62 4.09 27.71 5 28.31 1.88 5.6 5.6 1.88 6.75 7.09 3.55 13.21 4.52 9.24
parcprinter-strips-seq-sat 2.11 3.59 2.93 7.41 5.29 12.31 9.49 4.06 11.93 11.93 4.06 11.88 4.63 5.4 5.3 17.86 13.98
scanalyzer-strips-seq-sat 6.04 11.64 2.62 3.88 3.84 11.49 16.01 2.12 6.78 6.78 2.12 14.03 2.84 4.86 6.64 8.66 16.57
transport-strips-seq-sat 1.34 15.17 1.03 0.74 0.99 0.78 13.55 0.52 0.57 0.57 0.52 3.22 1.29 0.96 1.25 0.89 16.04

93.8 227.48 58.31 46.44 62.57 71.55 206.93 32.12 59.8 46.02 40.4 136.41 47.34 59 49.41 77.64 188

Table 2: A summary of the experimental results: expanded nodes. Per planner/domain, the number of expanded nodes
of the first search is given by the sum of ratios over all tasks. Boldfaced results indicate the best performance within
the corresponding domain. The last row summarizes the ratio over all domains.

overall results improve considerably. The approach is
still outperformed by the baseline with preferred oper-
ators, but the substantial improvement suggests further
exploration of this direction.

Another way to evaluate the performance of our ap-
proach is to look at the number of expanded nodes.
Since the approach runs iteratively, we compared the
results obtained for the first iteration only, that is lazy
weighted A∗ with the weight set to 100. Table 2 de-
scribes the results in terms of expanded nodes; with the
columns having the same role as before. Overall, the
picture here appears similar to this in Table 1. The main
difference is that in pairwise comparison, when looking
on the number of domains in which fork-decomposition
heuristics achieve better performance, these heuristics
appear to be slightly more competitive in terms of ex-
panded nodes of the first iteration than in terms of plan
cost of the last one.

Summary
We considered heuristic search for sequential satisficing
planning and introduced a way of obtaining a set of op-
erators from fork-decomposition implicit abstractions,
to be used as preferred operators. We then discussed
possible implications of such sets, and performed an
empirical evaluation of several settings. We show that

even a most conservative setting significantly improves
performance comparatively to using no preferred opera-
tors at all. In addition, we show that combining heuris-
tic evaluation from one heuristic family and preferred
operators from another may improve the overall perfor-
mance despite the overhead in computing two heuristic
functions per search node.

References
Bäckström, C., & Nebel, B. (1995). Complexity results

for SAS+ planning. Computational Intelligence,
11(4), 625–655.

Helmert, M. (2006). Solving Planning Tasks in The-
ory and Practice. Ph.D. thesis, Albert-Ludwigs
University, Freiburg.

Hoffmann, J., & Nebel, B. (2001). The FF planning
system: Fast plan generation through heuristic
search. Journal of Artificial Intelligence Re-
search, 14, 253–302.

Katz, M., & Domshlak, C. (2010a). Optimal admissible
composition of abstraction heuristics. Artificial
Intelligence, 174, 767–798.

Katz, M., & Domshlak, C. (2010b). Implicit abstrac-
tion heuristics. Journal of Artificial Intelligence
Research, 39, 51 – 126.

5

Richter, S., & Helmert, M. (2009). Preferred operators
and deferred evaluation in satiscing planning.
In Proceedings of the 19th International Con-
ference on Automated Planning and Scheduling
(ICAPS), pp. 273–280, Thessaloniki, Greece.

Wehrle, M., Kupferschmid, S., & Podelski, A. (2008).
Useless actions are useful. In In Proceedings
of the 18th International Conference on Auto-
mated Planning and Scheduling (ICAPS 2008,
pp. 388–395. AAAI Press.

6

