Abstractions += Landmarks

Carmel Domshlak and Michael Katz and Sagi Lefler
Faculty of Industrial Engineering and Management
Technion—Israel Institute of Technology
Haifa, Israel

Abstract

Abstractions and landmarks are two powerful
mechanisms for devising admissible heuristics for
classical planning. Here we aim at putting them
together by enhancing problem abstractions with
landmark information, and propose a concrete re-
alization of this direction suitable for structural-
pattern abstractions. Our preliminary evaluation
both provides a proof of concept, and suggests di-
rections for further improvements.

Introduction

Heuristic state-space search is a common and suc-
cessful approach to classical planning, and in par-
ticular, to cost-optimal classical planning. Apart
from the choice of the search algorithm, heuristic-
search solvers for cost-optimal planning differ
mainly in their admissible heuristic estimators. Re-
cent years have seen a growing body of work on
expanding the palette of heuristic estimators, with
most (if not all) current admissible heuristics being
based on one of the following three ideas:

1. eritical paths: the h™ heuristic family (Haslum
and Geffner 2000), with the h' = h™2 member
being closely related to the delete relaxation idea,

2. abstractions: pattern databases (Edelkamp
2001), merge-and-shrink abstractions (Helmert,
Haslum, and Hoffmann 2007), and structural
patterns (Katz and Domshlak 2008b),

3. landmarks: the admissible landmark heuristics
hY and h* (Karpas and Domshlak 2009), closely
related to delete relaxation.

Until very recently, these three ideas have been
developed in relative isolation, and thus there has
been no cross-fertilization between them. In the
first work aiming at connecting between the three
different approaches, Helmert and Domshak (2009)
in particular show that additive A™** and admis-
sible landmark heuristics are in fact very much
related. Importantly, this realization allowed the

authors to develop a novel admissible landmark
heuristic, hFM-¢ut " that has dramatically changed
the state of the art in performance for cost-optimal
planning.

In this work we consider another edge of the
above triangle of ideas, namely abstractions and
landmarks, and try to exploit the best of both
worlds by fertilizing the former with the latter. In
general, abstraction heuristics have been shown by
Helmert and Domshlak (2009) to be more expres-
sive (in a proper sense of this notion) than land-
mark heuristics. However, all the currently used
mechanisms for devising abstraction heuristics have
an Achilles heel that, potentially, might be cured
by exploiting the information communicated by the
problem’s landmarks. That Achilles heel is, some-
times direct and sometimes indirect, dependence of
the quality of abstraction heuristics on the richness
of the goal description that comes with the prob-
lem specification. Informally, the fewer the prob-
lem sub-goals explicitly mentioned by the problem,
the less guided (and thus less effective) are the pro-
cedures for selecting concrete sets of abstractions.
This is precisely the place where landmarks, con-
stituting implicit sub-goals of the problem, have a
potential to improve things.

Focusing on fork-decomposition structural pat-
terns (Katz and Domshlak 2008b), we show how
landmarks can be exploited in enhancing these ab-
straction heuristics by compiling the landmarks
into the problem specification. Our focus on fork-
decomposition is not incidental—among the ab-
straction heuristics in use to date, these are prob-
ably the most sensitive to the richness of the prob-
lem’s goal specification. The problem compilation
we propose is extremely simple, and at the same
time preserves all the essential reachability proper-
ties of the original problem. Our empirical analysis
clearly testifies for the effectiveness of the proposed
approach, boosting substantially the quality of the
induced heuristic estimates. The results are, how-

ever, only preliminary, and things in practice are
still not all that bright. In particular, we show that
further investigation of ad hoc action-cost parti-
tioning is required to improve the robustness of the
landmark-enhanced abstractions.

Background

We consider problems of classical planning cor-
responding to state models with single initial
state and only deterministic actions; here we con-
sider state models captured by the sas™ formal-
ism (Béackstrom and Nebel 1995) with non-negative
action costs. Such a problem is given by a quintuple
IM=(V,A I G,C), where:

e VV is a set of state wvariables, each v € V is
associated with a finite domain dom(v); each
complete assignment to V' is called a state, and
S = dom(V) is the state space of II. I is an ini-
tial state. The goal G is a partial assignment to
V; a state s is a goal state iff G C s.

e A is a finite set of actions. Each action a is a
pair (pre(a),eff(a)) of partial assignments to V
called preconditions and effects, respectively. C :
A — RO is a real-valued, non-negative action
cost function.

The value of a variable v in a partial assignment p is
denoted by p[v]. By V(p) C V we denote the set of
variables instantiated by p. An action a is applica-
ble in a state s iff s[v] = pre(a)[v] whenever pre(a)[v]
is specified. Applying a changes the value of v to
eff(a)[v] if eff(a)[v] is specified. The resulting state
is denoted by s[a]; by s[{a1,...,ax)] we denote the
state obtained from sequential application of the
(respectively applicable) actions aq, ..., a starting
at state s. Such an action sequence is an s-plan if
G C s[{ai,...,ar)], and it is a cost-optimal (or, in
what follows, optimal) s-plan if the sum of its action
costs is minimal among all s-plans. The purpose of
(optimal) planning is finding an (optimal) I-plan.

For a pair of states s1,s2 € S, by C(s1,82) we re-
fer to the cost of a cheapest action sequence taking
us from s; to so in the transition system induced by
IT; h*(s) = ming > C(s,s') is the custom notation
for the cost of optimal s-plans for II.

Let IT = (V, A,I,G,C) be a planning task with
variable domains dom(v;), F = |J;dom(v;) be
the set of facts (assuming name uniqueness), ¢ be
a propositional logic formula over facts F, 7 =
(ay,...,ax) be an action sequence applicable in I,
and 0 < ¢ < k. Following the terminology of Hoff-
mann et al. 2004, we say that ¢ is true at time ¢ in
m iff If{as,...,a:)] E ¢, and ¢ is a landmark of 11
iff in each plan for II, it is true at some time.

While landmarks can be any formulas over facts,
we restrict our attention to disjunctions of facts,

and use notation ¢ C F to denote “disjunction
over the fact subset ¢ of F”. This restriction cov-
ers all the landmark discovery procedures suggested
in the literature. Due to hardness of deciding even
that a single fact is a landmark (Porteous, Sebastia,
and Hoffmann 2001), practical methods for find-
ing landmarks are either incomplete or unsound.
In what follows we assume access to a sound such
procedure; in particular, in our evaluation we use
LAMA’s sound landmark discovery procedure, in-
troduced by Richter et al. (2008). The actual way
of discovering landmarks is tangential to our work.

Bringing Landmarks into
Abstractions

Landmarks are exploited these days in both sat-
isficing and optimal planning as heuristic search,
either for devising an incremental, landmark-by-
landmark search strategy (Hoffmann, Porteous,
and Sebastia 2004) or for deriving heuristic es-
timates (Richter, Helmert, and Westphal 2008;
Karpas and Domshlak 2009; Helmert and Domsh-
lak 2009). In parallel, other sources of informa-
tion for heuristic guidance have been proven ex-
tremely valuable, and this in particular so with var-
ious problem abstractions. We now proceed with,
first, arguing that landmarks have a natural po-
tential to enhance abstraction heuristics by target-
ing one of the major sources of their vulnerability.
We then describe a simple technique for enhanc-
ing structural-pattern abstractions with landmark
information, and evaluate and discuss two ways of
exploiting this enhancement in heuristic-search op-
timal planning. In particular, our preliminary em-
pirical evaluation of the framework testifies for the
success of the proof of concept.

Abstractions and Goal Specification

An abstraction heuristic is based on mapping II’s
transition system over states S to an abstract tran-
sition system over states S. The mapping is de-
fined by an abstraction function o : S — S¢
that guarantees C,(a(s),a(s’)) < C(s,s’) for all
states s,s' € S. The abstraction heuristic h*(s)
is then the distance from «a(s) to the closest ab-
stract goal state. Abstraction heuristics are al-
ways admissible by their very definition. Two
families of abstractions are used these days for
deriving admissible heuristics. Abstractions such
as in pattern databases (Edelkamp 2001; Haslum
et al. 2007) and merge-and-shrinks (Helmert,
Haslum, and Hoffmann 2007) are represented ex-
plicitly by their induced transition systems, while
structural patterns (Katz and Domshlak 2008b;
2009) correspond to implicitly, compactly repre-
sented abstractions.

One key feature of abstraction heuristics is that
typically there is a great degree of flexibility in
abstraction selection. This flexibility is a mixed
blessing as the choice of abstraction may dramat-
ically affect the quality of the heuristic estimate,
while homing in on a better/best choice is not
easy. A closer look at some successful approaches
to both (explicit) pattern database abstractions
and (implicit) structural pattern abstractions re-
veals some commonality in their strategies to re-
solve that choice dilemma. When a set of pat-
tern databases is selected, the farther state vari-
ables are from the goal-mentioned variables V(G)
in the causal graph, the more they are likely to be
abstracted away (ignored) altogether. The picture
with the fork-decomposition structural patterns is
very much similar. While there is not much room
for flexibility in selecting such structural patterns,
the size of the patterns’ set, and thus the quality
of the resulting heuristic, depend crucially on the
number of goal-mentioned variables.

This dependence of some abstraction heuristics
on the size of V(G) is quite annoying as any SAS™
planning problem can easily be reformulated to con-
tain just a single goal-mentioned variable. How-
ever, things that were goals before the reformula-
tion do not really cease to be goals, but only become
implicit goals. In fact, this is just one type of pos-
sible implicit goals; in particular, any landmark is
such an implicit goal by its very definition.

Landmark-based Problem
Reformulation

Given the aforementioned dependence of some ab-
straction heuristics on the richness of the explicit
goals, as well as the fact that many de facto goals
are not explicitly given in the description of the
problem, it is only natural to explore the possibil-
ity of converting some (discoverable) implicit goals
to explicit goals. Probably the most direct way to
achieve that is via a specific notion of one-sided
equivalence between planning problems which we
call surrogate. For a planning task II, let @ de-
note the set of all optimal plans for II. Given two
planning tasks IT and II', we say that II' is a sur-
rogate of 1T if

(i) dr = 0 iff Oy =0,

(ii) there exists a mapping f : &y — Ppy such
that, for any p’ € @1/, f(p') can be computed
in time polynomial in ||II||, |p’|, and |f(p')].

Note that, if II' is a surrogate of II, then instead
of optimally solving II, one can optimally solve
II’, and then reconstruct an optimal plan for II
from the obtained plan for II'. This is precisely
what we exploit here using what we call direct

landmark-based surrogates. Given a planning task
II=(V,A,I,G,C), and a set of initially unachieved
(that is, not true at time 0) disjunctive landmarks
L C 2F of TI, the direct landmark-based surrogate
or = (VE AL TV GE CF) of 1T is constructively
defined as follows.

e For each landmark ¢ € L, we introduce a new
variable vy with dom(vg) = {0,1}, and set VL =
Vu {v¢ ‘ ¢ € L}.

e The initial state and goals are set to I* = I U
{vg=0|¢ € L}, and GE = GU{vy=1|¢ € L}.

e For each action a € A, we introduce an action
al = (pre(a), eff(a)U{v,=1|eff(a)[v] € ¢ € L}),

that is, for each landmark ¢ € L that a can
achieve, a” will assign the corresponding auxil-
iary variable vy to its goal value. Given that, we
set AL = {aF | a € A}.

Proposition 1 Given a planning task I1 and a set
of initially unachieved disjunctive landmarks L of
II, the direct landmark-based surrogate ITY of 11 is a
surrogate of the latter, and can be constructed from
IT and L in polynomial time.

While the resemblance between the respective
components of II and II” is high, fork decompo-
sition of II” both enriches the patterns that would
be present in the fork decomposition of II (by, e.g.,
adding more children to forks’ roots), and induces
patterns that would not be present in the fork de-
composition of IT at all. In general, the richer is the
fork-decomposition in terms of the number of pat-
terns and the comprehensiveness of each pattern,
the higher the estimate we can possibly obtain from
that decomposition. However, “possibly obtain”
and “obtain” are not necessarily the same thing,
and a lot depends on the specific action cost par-
titioning between the patterns of the additive en-
semble comprising h7 (Katz and Domshlak 2008a).
The choice of action cost partitioning can vary from
optimal (in terms of maximizing the estimate) to al-
most arbitrarily bad. The good news is that, under
optimal action cost partitioning (achievable in poly-
nomial time; see Katz and Domshlak 2008a), the
dominance relation h7 (I¥) > h¥(I) always holds.
In fact, a stronger claim holds.

Proposition 2 Given a planning task 11 =
(V,A,I,G,C), and a direct landmark-based surro-
gate ITY of T1, for any state s of I and any state s
of IT¥ such that s'[V] = s, under the optimal action
cost partitioning we have h7 (s') > h¥(s).

While Proposition 2 seems to provide a clear-
cut vote for the attractiveness of switching the
search from II to IT%, in practice the picture is more
complicated. The procedure of Katz and Domsh-
lak (2008a) for devising an optimal action cost par-
tition is polynomial-time, yet it is based on solving
large linear programs, and thus takes too much time
to be computed in practice at every search node.
As the first sanity check for the practical useful-
ness of switching from II to II*, we compared the
initial-state estimates of a sub-optimal (yet cheep
to compute) fork-decomposition heuristic for prob-
lems from a wide sample of IPC domains, as well
as for their respective direct landmark surrogates.

e We have focused on the fork-decomposition
heuristic h¥, corresponding to the ensemble of
all (not obviously redundant) fork subgraphs of
the causal graph, with the domains of the roots
being abstracted using the “leave-one-value-out”
binary-valued domain decompositions; the ac-
tion cost partitioning was set to “uniform” (Katz
and Domshlak 2008b). On the domains consid-
ered in our evaluation this heuristic has exhib-
ited the best performance among the family of
fork-decomposition heuristics recently evaluated
by Katz and Domshlak (2009).

e The landmarks were discovered using LAMA’s
landmark discovery procedure (Richter, Helmert,
and Westphal 2008). The construction of the sur-
rogate task IT* from the original task IT was done
as a part of the preprocessing.

Table 1 summarizes the effectiveness of switching
to the surrogate problems in terms of the quality of
the initial state estimation with the above setting
of h¥. These results appear to be very promis-
ing. Except for the Blocksworld domain where es-
timates on II” on average got slightly worse, in
all other domains the estimates improved (or re-
mained unchanged), with the most substantial av-
erage improvement of &~ 120% in Freecell, Grid, and
Miconic. Given that LAMA’s landmark discovery
procedure typically takes very low time, these re-
sults suggest that the basic idea of incorporating
landmark information into the process of problem
abstraction is valuable. Next, however, we show
that there is still some work to be done to make
the basic idea “bulletproof”.

Estimating in II”, searching in II

The two left-most groups of columns in Table 2,
notably (1) A*/h% on IT* and (2) A*/h% on II,
depict the performance of A* with our setting of
h7 on a sample of domains, with and without en-
riching fork-decomposition with landmarks, respec-
tively. Columns task and h* capture the identity of

n7 (1) nI L)

domain 5300 1 (1LY
airport-ipc4 (20) 0.627 0.969
blocks-ipc2 (30) 0.477 0.432
depots-ipc3 (7) 0.419 0.508
driverlog-ipc3 (14) 0.632 0.708
freecell-ipc3 (7) 0.295 0.636
grid-ipcl (2) 0.258 0.571
gripper-ipcl (11) 0.375 0.546
logistics-ipcl (6) 0.854 0.931
logistics-ipc2 (22) 0.998 0.994
miconic-strips-ipc2 (140) 0.434 0.964
mprime-ipcl (25) 0.489 0.625
mystery-ipcl (22) 0.621 0.713
openstacks-ipch (7) 0.611 0.829
pathways-ipc5 (5) 0.187 0.187
pipesworld-notankage-ipc4 (22) 0.302 0.359
pipesworld-tankage-ipc4 (14) 0.218 0.293
psr-small-ipc4 (50) 0.169 0.178
rovers-ipch (7) 0.529 0.653
satellite-ipc4 (9) 0.541 0.844
tpp-ipch (6) 0.838 0.836
trucks-ipc5 (9) 0.385 0.608
zenotravel-ipc3 (12) 0.694 0.809

Table 1: Average ratios between the initial state
estimates of h7 on the original and landmarks-
enhanced problems, and the optimal solution
length. The first column captures the domains,
with the number of problem instances taken into
consideration in parentheses.

the problem instances, and their respective opti-
mal solution cost; the performance is measured in
terms of time (in seconds) and the number of ex-
panded nodes. The implementation was based on
the A* algorithm with full duplicate elimination of
the Fast Downward planner (Helmert 2006), and
the structural-pattern database version of the h¥
heuristic (Katz and Domshlak 2009). All the ex-
periments were run on a 3GHz Intel E8400 CPU;
the time and memory limits were set to 30 minutes
and 1.5 GB, respectively.

On Satellite, Trucks, and Freecell, switching to
II” substantially reduced the number of expanded
nodes, and in the former two domains, allowed solv-
ing instances not solvable by A* with h¥ on the
original problem formulations. With Blocksworld
the picture was exactly the other way around, with
the difference in the number of expanded nodes
reaching almost three orders of magnitude in favor
of not switching to IT”. Given analysis of the initial
state estimates in Table 1, such a qualitative out-
come is not that surprising for Blocksworld. The
picture, however, is more interesting in case of, e.g.,
Gripper and Driverlog domains. While the initial
state estimates of h7 on these tasks surrogates are
higher than on the original problem formulations,

A*/h7 on I A*/h7 on ITF H LM-A* on II; h7 on II*
task [h* H hg(I) [nodes [time H h?(ll‘) [nodes [time H h?(IL) [nodes [time
satellite-ipc4
01 9 6 24 0.01 8 10 0.00 8 10 0.00
02 13 10 86 0.00 12 15 0.01 12 14 0.00
03 11 5 2249 0.11 9 1035 0.10 9 494 0.11
04 17 11 7510 0.56 15 4521 0.92 15 1046 0.48
05 15 7 279569 61.87 11 74442 17.37 11 12013 7.86
06 20 10 1496577 | 113.30 16 314788 65.61 16 40559 31.58
07 21 19 1593592 1120.68 19 236970 416.34
trucks-ipch
01 13 5 1691 0.06 8 450 0.04 8 262 0.05
02 17 7 9624 0.33 10 3126 0.28 10 1711 0.27
03 20 8 80693 4.24 12 13556 1.84 12 6465 1.74
04 23 8 1764624 64.95 12 991005 85.47 12 482690 171.31
05 25 9 12656561 | 662.25 15 4566431 533.04 15 1440802 1000.69
o7 23 10 2135888 138.55 15 241608 45.98 15 84771 32.25
08 25 18 607186 215.22 18 97019 63.00
freecell-ipc3
01 8 5 235 0.17 6 154 0.22 6 186 0.25
02 14 5 31050 2.98 9 6471 1.59 9 6471 3.01
03 18 6 197647 20.66 12 43476 12.07 12 39388 26.64
04 26 6 998395 87.19 16 186983 47.17 16 166323 120.90
05 30 5 6536337 | 630.56 17 735724 189.95 17 580174 443.27
blocks-ipc2
04-0 6 6 15 0.00 6 9 0.00 6 15 0.01
04-1 10 4 13 0.01 4 31 0.02 4 17 0.02
04-2 6 5 8 0.00 4 11 0.01 4 11 0.01
05-0 12 5 35 0.01 5 187 0.03 5 99 0.03
05-1 10 6 42 0.00 4 124 0.02 4 79 0.02
05-2 16 7 151 0.00 6 680 0.05 6 264 0.05
06-0 12 9 33 0.01 7 339 0.06 7 105 0.05
06-1 10 9 42 0.01 7 212 0.05 7 104 0.04
06-2 20 8 932 0.01 7 5832 0.38 7 2097 0.33
07-0 20 10 265 0.01 8 16238 1.74 8 3317 0.80
07-1 22 9 6908 0.10 7 76747 5.83 7 23206 4.05
07-2 20 9 1552 0.03 8 37428 3.46 8 10467 1.98
08-0 18 11 1572 0.03 8 88029 12.99 8 18874 5.01
08-1 20 9 10470 0.18 8 294552 36.54 8 78864 18.96
08-2 16 12 532 0.02 9 24379 4.19 9 6233 1.74
09-0 30 12 137317 3.11 10 8778603 1051.08
09-1 28 12 3530 0.10 9 2503352 390.23 9 364004 147.01
09-2 26 14 6328 0.17 11 2247311 358.67 11 203647 86.03
10-0 | 34 16 1548503 37.65
10-1 32 16 615663 15.85
10-2 34 16 1528645 37.28
gripper-ipcl
01 11 5 214 0.01 7 473 0.02 7 115 0.01
02 17 7 1768 0.04 10 10181 0.35 10 1403 0.12
03 23 9 11626 0.23 13 153356 6.92 13 10723 1.22
04 29 11 68380 1.65 16 2027535 119.67 16 66571 10.78
05 35 13 376510 11.04 19 | 24803228 1773.18 19 373331 77.19
06 41 15 1982032 75.66 22 1976923 536.39
o7 47 17 10091986 | 465.70
driverlog-ipc3
01 7 3 49 0.01 5 17 0.01 5 12 0.00
02 19 12 15713 0.54 12 30831 1.99 12 15567 2.62
03 12 8 164 0.01 8 267 0.04 8 164 0.04
04 16 11 6161 0.55 10 10652 1.52 10 7367 2.07
05 18 12 13640 1.36 13 21202 4.50 13 8216 3.07
06 11 8 608 0.13 8 448 0.15 8 378 0.19
o7 13 11 862 0.20 11 996 0.40 11 695 0.40
08 22 12 666282 97.11 13 1119854 334.70
09 22 12 150237 19.19 14 194861 49.61 14 66879 32.51
10 17 12 4260 0.52 14 6369 3.06 14 2601 1.62
11 19 11 43395 6.97 14 29944 13.97 14 6174 3.89
13 26 15 1303099 | 473.73 18 233560 273.41

Table 2: A closer look on the performance of A* with h7 under uniform action cost partitioning with (A*/h%
on IT") and without (A*/h? on II) enriching fork-decomposition with landmarks, as well as of LM-A* with
h¥ where the search is done on the original problem II, while the heuristic A7 is computed for states in ITZ.

the overall performance of A* with h”¥ on the orig-
inal problems appears to be at least as good (and
in terms of the number of problems solved, much
better than) on the surrogates 1.

While further investigation of this phenomenon
is required, one of the potentially critical causes for
that anomaly is the increase in the size of the search
space from II to IT*. If a problem II comes with a

set of n landmarks L, then the number of reachable
states in IT* can be up to 2" times larger than in II
because every state of II is now considered in dif-
ferent contexts of achievement of different subsets
of landmarks. To eliminate this cause to a large
degree we have evaluated a scheme in which the
heuristic estimates come from the surrogate prob-
lem while the (forward state-space) search is per-

formed on the original problem using the recent
LM-A* search algorithm of Karpas and Domshlak
(2009). In general, this scheme works as follows.

1. Starting the initial state I, each evaluated state s
of IT is first associated with a subset of landmarks
L C L that must be achieved on the way to the
goal from s. Determining the landmark set Ly is
done using the techniques developed by Richter
et al. (2008) and Karpas and Domshlak (2009).

2. Given Ly, the state s is mapped into the state s’
of T where s'[V] = s, and, for each ¢ € L, if
¢ € L, then s'[vg] = 0, otherwise, s'[vg] = 1.

3. The heuristic estimate for s is set to h7 (s). The
latter is no longer a state-dependent, but path,
or even multi-path dependent estimate, and thus
the machinery of LM-A" is required. Impor-
tantly, however, this estimate is admissible, and
thus LM-A" guarantees to find only optimal so-
lutions.

The third group of columns in Table 2 (LM-A* on
I0; K7 on IIF) depict the results obtained with that
scheme. In general, the reduction in the number of
state expansions comparatively to running A* di-
rectly on the surrogates II” has been consistently
substantial. Note that, despite this improvement of
pruning, some tasks solved with A* on IT* have not
been solved using LM-A* (e.g., task 8 in Driverlog),
and this because of a generally higher search-node
processing time of LM-A*. However, the opposite
has been observed as well (e.g., task 13 of Drivelog,
and task 6 of Gripper), with the major difference
being observed in the Miconic domain: while A*
with k7 solved 51 and 52 tasks from this domain
on their original and surrogate representations, re-
spectively, using the LM-A™ scheme with the same
sets of landmarks allowed for solving 108 tasks in
Miconic.

This, of course, is not the end of the story
for landmarks and fork decomposition. As it is
exemplified by the still not good results for the
Blocksworld domain, the original growth of the
search space was not the only source of troubles.
We believe that another critical pitfall is the in-
terplay between our ad hoc action cost partition-
ing among the patterns and the typical nature of
landmarks. A landmark ¢ should take place only
at some time point along the plan. Very roughly,
once ¢ is achieved, the portions of the action costs
“assigned to the achievement of ¢” are getting lost,
resulting in erosion of the heuristic values. In sum-
mary, devising better and yet fast, ad hoc action
cost partitioning in face of landmark-oriented pat-
terns is clearly desirable.

Future Work

We have outlined a general idea of exploiting land-
mark information for enhancing abstraction based
heuristics, and proposed a concrete realization of
this direction suitable for structural-pattern ab-
stractions.

Many things are yet to be improved and ex-
tended even for the closely considered here case of
structural-pattern abstractions. In addition, while
the same landmark compilation technique can in
principle be used in conjunction with other abstrac-
tion heuristics such as PDBs and merge-and-shrink,
this will probably not be a good idea (and our selec-
tive experiments testified for that). The reason for
that is not surprising: the particular problem refor-
mulation induced by the direct landmark-based sur-
rogates increases the dimensionality of the problem,
up to possibly a linear factor. While structural-
pattern abstractions are not sensitive to that mat-
ter, this is substantially less so for PDB and merge-
and-shrink abstractions. Hence, some alternative
ways of incorporating landmark information into
abstractions should be looked for as well.

References

Béackstrom, C., and Nebel, B. 1995. Complex-
ity results for SAST planning. Comp. Intell.
11(4):625-655.

Edelkamp, S. 2001. Planning with pattern
databases. In ECP, 13-24.

Haslum, P., and Geffner, H. 2000. Admissible
heuristics for optimal planning. In ICAPS, 140—
149.

Haslum, P.; Botea, A.; Helmert, M.; Bonet, B.;
and Koenig, S. 2007. Domain-independent con-
struction of pattern database heuristics for cost-
optimal planning. In AAAI 1007-1012.

Helmert, M., and Domshlak, C. 2009. Landmarks,
critical paths and abstractions: What’s the differ-
ence anyway? In ICAPS.

Helmert, M.; Haslum, P.; and Hoffmann, J. 2007.
Flexible abstraction heuristics for optimal sequen-
tial planning. In ICAPS, 176-183.

Helmert, M. 2006. The Fast Downward planning
system. JAIR 26:191-246.

Hoffmann, J.; Porteous, J.; and Sebastia, L. 2004.
Ordered landmarks in planning. JAIR 22:215-278.
Karpas, E., and Domshlak, C. 2009. Cost-optimal
planning with landmarks. In IJCAL

Katz, M., and Domshlak, C. 2008a. Optimal ad-

ditive composition of abstraction-based admissible
heuristics. In ICAPS, 174-181.

Katz, M., and Domshlak, C. 2008b. Structural
patterns heuristics via fork decomposition. In
ICAPS, 182-189.

Katz, M., and Domshlak, C. 2009. Structural-
pattern databases. In ICAPS.

Porteous, J.; Sebastia, L.; and Hoffmann, J. 2001.
On the extraction, ordering, and usage of land-
marks in planning. In ECP, 37-48.

Richter, S.; Helmert, M.; and Westphal, M. 2008.
Landmarks revisited. In AAAI 975-982.

