Optimal Additive Composition of Abstraction-based Admissble Heuristics

Michael Katz and Carmel Domshlak*
Faculty of Industrial Engineering & Management

Technion,

Abstract

We describe a procedure that takes a classical planning task
a forward-search state, and a set of abstraction-based-admi
sible heuristics, and derives aptimal additive composition

of these heuristics with respect to the given state. Most im-
portantly, we show that this procedurepislynomial-timefor
arbitrary sets of all known to us abstraction-based hecsist
such as PDBs, constrained PDBs, merge-and-shrink abstrac-
tions, fork-decomposition structural patterns, and s$tmad
patterns based on tractable constraint optimization.

Introduction

Admissible heuristics are critical for effective planning
when either optimal or approximately-optimal solutions ar
required. As automated planning is known to be NP-hard
even for extremely conservative problem formalisms (By-
lander 1994), no heuristic should be expected to work well
in all planning tasks. Moreover, even for a fixed planning
task, typically no tractable heuristic will home in on alkth
“combinatorics” of the task in hand. The promise, however,
is that (i) different heuristics will target different bslbf
the planning complexity, and (ii) composing the individual
strengths of numerous heuristics could allow us both solv-
ing a larger range of planning tasks, as well as solving each
individual task more efficiently.

Since the late 90's, numerous (though not many) ad-
missible heuristics for domain-independent planning have

been suggested and found useful, and research in this di-

Israel

rection was first exploited in the works on additive pat-
tern database (APDB) heuristics (Edelkamp 2001; Felner,
Korf, & Hanan 2004), and more recently it was applied in
the scope of constrained PDBs,-reachability, and struc-
tural patterns heuristics (Haslum, Bonet, & Geffner 2005;
Katz & Domshlak 2008b). The basic idea underlying all
these “additive heuristic ensembles” is elegantly simfde:
each problem’s action, if it can possibly be counted by
more than one heuristic in the ensemble, then one should
ensure that the cumulative accounting for the cost dbes

not exceed its true cost in the original problem.

Until very recently, such “action-cost partitioning” was
achieved in one certain manner by accounting for the whole
cost of each action in computing a single heuristic, while
ignoring the cost of that action (by setting it to zero) in com
puting all the other heuristics in the set (Edelkamp 2001;
Felner, Korf, & Hanan 2004; Haslum, Bonet, & Geffner
2005). Recently, this “all-in-one/nothing-in-rest” amtk
cost partitioning has been generalized by Katz and Domsh-
lak (2008b) and Yanet al. (2007) toarbitrary partitioning
of the action cost among the ensembles’ heuristics.

The great flexibility of additive heuristic ensembles, how-
ever, is a mixed blessing. For good and for bad, the method-
ology of taking the maximum over the values provided by an
arbitrary set of independently constructed admissibleikeu
tics is entirely non-parametric. In contrast, switchingtb
ditive heuristic ensembles requirsslecting an action-cost
partitioning schemgand this decision problem poses a num-
ber of computational challenges. In particular,

rection becomes more and more active. In this paper we 1 The space of alternative choices here is verbally infaste

focus on the old question of how one should better orches-
trate a set of admissible heuristics in the effort of solv-
ing a given planning task. One of the well-known and
heavily-used properties of admissible heuristics is talt t
ing the maximum of their values maximizes informative-
ness while preserving admissibility. A more recent, alter-

native approach to orchestrating a set of admissible heuris 3.

tics corresponds to carefully separating the informatisetu
by the different heuristics in the set so that they values
could be summed up instead of maximized over. This di-

*The work of both authors is partly supported by Israel Sa@enc
Foundation and C. Wellner Research Fund.
Copyright © 2008, American Association for Atrtificial Intelli-
gence (www.aaai.org). All rights reserved.

the cost of each action can be partitioned into an arbitrary
set of non-negative real numbers, sum of which does not
exceed the cost of that action.

2. At least in domain-independent planning, this decision

process should be fully unsupervised.

The last but not least, the relative quality of each aetion
cost partition (in terms of the informativeness of the re-
sulting additive heuristic) may vary dramatically between
the examined search states. Hence, the choice of the
action-cost partitioning scheme should ultimately be a
function of the search state in question.

These issues may explain why all previous works on
(both domain-dependent and independent) additive heuris-

tic ensembles adopt this or another ad hoc (and search-

state independent) choice of action-cost partitioning. As
the result, all the reported empirical comparative evabunast

of various max-based and additive heuristic ensembles are structure
inconclusive—for some search states along the search pro-

cess the (pre-selected) additive heuristics’ combinatias
dominating the max-combination, while for the other states

state-space search. In what follows we distinguish between
the actual edge-weighted transition graph, and its weights
omitted, qualitative skeleton which we cathnsition-graph
Informally, transition-graph structures capture
the combinatorics of the classical planning problems, evhil
transition graphs annotate this combinatorics with “perfo
mance measures”.

the opposite was the case. In the context of domain-specific , A transition-graph structure (or TG-structure, for

APDBs, Yanget al. (2007) conclude that “determining
which abstractions [here: action-cost partitioning scegm
will produce additives that are better than max over stan-
dards is still a big research issue.”

The contribution of this paper is precisely in addressing
the problem of choosing the right action-cost partitioning
over a given set of heuristics. Specifically, we

e Provide a procedure that, given (i) a classical planning
tasklII, (ii) a forward-search state of II, and (iii) a set
of admissible heuristics based on over-approximating ab-
stractions oflI, derives arpptimal action-cost partition-
ing for s (that is, a partitioning that maximizes the heuris-
tic estimate of that state). The proceduréily unsuper-
vised and is based on a linear programming formulation
of that optimization problem.

e Show that the time complexity of our procedurepigly-
nomial for arbitrary sets ofll known to us abstraction-
based heuristic functions. In particular, such “procedure
friendly” heuristics include PDBs (Edelkamp 2001; Yang,
Culberson, & Holte 2007), constrained PDBs (Haslum,
Bonet, & Geffner 2005), merge-and-shrink abstrac-
tions (Helmert, Haslum, & Hoffmann 2007), fork-
decomposition structural patterns (Katz & Domshlak

2008b), and structural patterns based on tractable con-

straint optimization (Katz & Domshlak 2008a).
Notice that, in particular, the estimate provided by a max-

based ensemble corresponds to the estimate provided by the

respective additive ensemble undemeaction-cost parti-

tioning. As such, the max-estimate cannot exceed the one

provided by the optimal action-cost partitioning, and thus
at least for the abstraction-based heuristics, we answeer th
aforementioned question of “to add or not to add”.

Background

We consider the standard setting of cost-optimal classical

planning for problems described using thes™ represen-

tation language (Backstrom & Nebel 1995).sAs* plan-

ning taskis a quintupldI = (V, A, I, G, cost), where

o V ={uv,...,v,} is a set ofstate variableseach associ-
ated with a finite domaidom(v;); each complete assign-
ments to V' is called astate I is aninitial state, and the
goal G is a partial assignment 3.

e A is a finite set ofactions where each actioa is a pair
(pre(a), eff (a)) of partial assignments 6 calledprecon-
ditionsandeffectsof a, respectively, andost : A — R+
is a non-negative real-valuedtion cost function

The semantics of a planning tabkis given by its induced
state-transition model, often also callednsition graph
Searching in this transition graph corresponds to forward

short) is a quintuplel = (S, L, Tr, s, S¢) where S is
a finite set ofstates L is a finite set oftransition labels
Tr C S x L x S is a set of (labeledyansitions s € S
is aninitial state, andS¢ C S is a set ofgoal states

e A transition graph is a pair (7, w) where7 is a TG-
structure with labeld., andw : L — R°T is atransition
cost function For a states € S and a subset of states
S’ C S'in 7, thedistancedist(s, S") in (T, w) is the cost
of a cheapest (with respect t0) path froms to a state
in S” along the transitions of. Any path froms’ to S¢
is aplan for (7, w), and cheapest such paths are called
optimal plans.

The states of the TG-structuf&Il) induced by asAs"
planningtaslI = (V, A, I, G, cost) are the states df, the
transition labels off(IT) are the actions!, and(s, a, s’) €
Tr iff (i) s[v] = pre(a)[v] wheneverpre(a)[v] is specified
and (i) s'[v] = eff(a)[v] if eff(a)[v] is specified, and other-
wise s’'[v] = s[v]. The actual transition graph induced Hy
is (7(I), cost).

Additive Admissible Heuristics

Our focus here is on additive ensembles of admissible
heuristics, or simply,additive heuristics Very often,
each individual admissible heuristic for domain-indepamtd
planning is defined as the optimal cost of achieving the goals
in an over-approximatingbstractionof the planning prob-
em in hand (Pearl 1984). Such an abstraction is obtained
by relaxing some constraints present in the problem, and the
desire is to obtain a tractable (that is, solvable in polyno-
mial time), yet informative abstract problem. In turn, by
additive abstractiorwe refer to a set of abstractions, inter-
constrained by a requirement to jointly not over-estimage t
transition path costs of the original problem.

Definition 1 Anadditive abstraction of a transition graph
(T, w) is a set of pairsd = {{((T;, @), a;) }X_; where, for
1 < i < k, (T;,w;) is a transition graph with structure
T, = (Si, Li, Try, st, 89), o - S — S; is a function called
abstraction mappingv;(s’) = s!, a;(s) € S¢ forall s €
S, and, for each pair of states s’ € S, holds

k
Z dist(a;(s), a;(s")) < dist(s, s"). 1)
=1

Fork = 1, Definition 1 formalizes standard, non-additive
abstractions, while fok > 1 it poses only a general require-
ment of not overestimating the distances. For our objective

!Admissible heuristics may also correspond to problem refor

mulations that are not abstractions; see our discussiendat

of dealing with action-cost partitioning, we need a tighter

binding between the original and abstract TG-structures.

Specifically, we need to (i) associate each abstract tiansit
label with a single original transition label, and (ii) vigri
that each original transition corresponds to an apprapriat
set of abstract transitigoaths

Definition2 An ensemble of abstractions (ABS-
ensembl¢ of a TG-structure? = (S,L,Tr, s, S%)
is a set of tripletsAE = {(T;,cy, B:)}F_, where, for

1 <i<k,

- T, = (S, L;, Try, st, SY) is a TG-structure,

- «; : S — §; is an abstraction mapping, ang : L; —
L is anaction-associating mapping

— ai(s!) = s!, anda;(s) € S forall s € S€,

— for each transition(s, , s’) € Tr, there is a pattp from
a;(s) to a;(s") in 7; such that (i) all the transitions op
have different labels, and (ii) for each lab#lalong p,
holdsg;(I') = L.

The notion of ABS-ensembles allows us generalizing the
gualitative skeletons of various additive abstractiomas ére
based on action-cost partitioning. In particular,

e The setting of all3; being bijective mappings captures ad-
ditive homomorphism abstractiorssich as (standard and
constrained) APDBs (Yang, Culberson, & Holte 2007;
Haslum, Bonet, & Geffner 2005), as well as (addi-
tive) merge-and-shrink abstractions (Helmert, Haslum, &
Hoffmann 2007).

e The (possibly confusing at first view) setting of all be-
ing injective (with, possibly|S| < |S;|) captures addi-
tive embedding abstraction®btained by expanding the
original action set by some new actions derived from the

original ones. In such cases, the new actions are con-
structed with certain desired properties such as positive

and/or unary effects only (Bylander 1994), etc.

e Each individual abstraction in an ABS-ensemble may
correspond to dybrid (homomorphism/embedding) ab-

straction such as these induced by some structural pat-

terns (Katz & Domshlak 2008b).

e Importantly, nothing in the definition of ABS-ensemble
prevents us from using arbitrary mixtureof the above
three types of abstractions.

First things first, however, Theorem 1 relates ABS-

we haved = {{(T;, =), a;)}f_, being an additive ab-
straction of the transition grapk(Z, @).

The proof of Theorem 1 is completely technical by
connecting Definitions 1 and 2. In what follows, if
I = (V,A,I,G,cost) is asAs’T planning task,AE =
T, o, Bi)}E_, is an ABS-ensemble of (1), and{w; :

L; — R*}%_is a set of transition cost functions, we say
that A = {((7;, @), ;) }F_, is an additive abstraction of
IT with respect tad€, denoted byA &y A€, if

Vac A: Xk: >

i=11e8; " (a

®3)

w;(l) < cost(a)
)

In other words, each additive abstractidne; AE cor-
responds to a certain action-cost partitionindlobver AE
and, importantly, vice versa.

Definition 3 LetIl = (V, A, I, G, cost) be asas’™ plan-
ning task with state sef, and A = {(7;, o, 8;)}%_, be
an ABS-ensemble &f(II). For any additive abstraction
A = {{(Ti, @), ;) }r_ | &n AE, theadditive heuristic
h 4 is the function assigning to each statec S the quan-
tity Zle dist(a;(s), SE). Theoptimal additive heuristic

h ¢ is the function assigning to each statec S the quan-
tity max 4eae ha(s).

Definition 3 specifies the set dll additive heuristics
for II obtainable via action-cost partitioning over a given
ABS-ensemble. Most importantly, it also specifiesipper-
boundon the heuristic estimate< (s) that can possibly be
obtained for a state on the basis of that (infinite) set of ad-
ditive heuristics. The admissibility of each heuristig in
that space is immediate from Definition 1, and thus the proof
of Theorem 2 is straightforward.

Theorem 2 (Optimal Admissibility) For any sas™ plan-
ningtaskil = (V, A, I, G, cost), any ABS-ensemhlé€ of
7(II), and any state of IT, we haveh 4¢(s) < dist(s, Sg).

LP-Optimization
Having specified the notion of optimal additive heuristic
hae, we now proceed with the computational part of the
story. Suppose we are givensas™ planning taskll =
(V,A,I,G,cost) with state setS, and an ABS-ensemble

ensembles and additive abstractions induced by the former 4¢ — ((7; o, B:i)}r_, of T(II). Assuming that individ-

via action-cost partitioning (expressed by Eq. 2). Worth no
ing here that the generality of Definition 2 and Theorem 1
is not for an exercise only—later we exploit it to establish

ual additive heuristicd 4 can be efficiently computed for
all A &g AE (as it is the case with the ABS-ensembles
of practical interest), the big question now is whethai

some computational results of an adequate generality. (Due can e efficiently computed. Here we characterize a fam-

to the lack of space, the proofs are given in the full TR.)

Theorem 1 (Additive Abstractions) Let 7 be a TG-
structure with labeld., and letAE = {(7;, i, 3:)}5_, be
an ABS-ensemble Gt For any functionw : L — R%*, and
any set of functionss; : L; — R%*, 1 < i < k, such that

VieL: > > @) <=(),

=lres)

@)

ily of ABS-ensembles for which the answer to this ques-
tion is affirmative, and show that this family comprises all
the abstraction-based heuristic schemes suggested s far f
domain-independent classical planning.

Our characterization is constructive in terms afm-

putability ofh_4¢ (s) via a compactlinear program induced

2For the sake of readability, we use “compact” as a synonym of
“being of sizeO (poly(|11]))".

by the triplet ofIl, A&, ands. We begin with introduc-
ing a set of linear constraints specifying all possible cost
part|t|ons of the actions € A over their representatives
kB !(a) in the components afl€. For each (abstract)
Iabell € UleLi, letw; be a non-negative real-valued vari-
able uniquely associated with and let the set of all these
“label-cost” variables be|ng denoted h‘q} The (linear)ad-
ditivity constraintC2d(w) of IT on A€ mirrors Eq. 3 as

Vae A: Z Z w; < cost(a)

i=11€6;7"(a)

with #24d being the convex polyhedron specified by
C*dd(w). Note that there is a straightforward bijective
correspondence between the poimtsc #7244 and (with
some abuse of notation) the additive abstractighs =
{((Ti, w), i) iy €m AE.

Using the notion of additivity constrarﬂﬁdd(), We Nnow
proceed with characterizing ouhi¢-friendly” family of
LP-optimizableABS-ensembles.

(4)

Definition 4 LetIl = (V, A, I,G,cost) be asas’ plan-
ning task, A = {(7;, i, @)}l , be an ABS-ensemble of
7(IT), andC*¥(w) be the additivity constraint dffl on AE.

Given a states € S, anLP- encodlng of A& with respect
tosisatripletL(s) = (7, f(7),CA¢ (zw)) where™ is a
set of non-negative real-valued variabl¢gsis a real-valued
affine function oveiz’, C¢ is a set of linear constraints on
7 andw, and

Ywe 24 max f(x) =ha,(s),

xwESAE

(5)

where #4¢ is the convex polyhedron specified ®§¢ U
Cadd_

The ABS-ensemblel€ is called LP-optimizable if,
for every states € S, there exists (and one can
generate in pon time) a compact LP-encodifgs)
(7, f(T),CH¢ (zw)) of AE with respect tcs.

The next two theorems provide the two cornerstones
of characterizing our % sc-friendly” family of ABS-
ensembles on the ground of their LP-optimizability.

Theorem 3 (Tractability) Given asAst planning taski,
and an ABS-ensemhl&€ of 7(11), if A is LP-optimizable,
thenh 4¢(s) is poly-time computable for every state S.

Theorem 4 (Composition) For any SsAs™ planning
task II, and any set of LP-optimizable ABS-ensembles
{A&, ..., A&} of T(TD), if m = O(poly(|11])), then the
“composite” ABS- ensembLéE U AE; ofT() is also
LP-optimizable.

With these two gratifying properties of LP-optimizable
ABS-ensembles in hand, in what follows we check whether
any of the known families of abstraction-based heuristics a
tually leads to such LP-optimizable ABS-ensembles. The
answer to this question turns out to be positive to a surpris-
ing extent.

Explicit Homomorphism Abstractions

Probably the most well-known family of additive abstrac-
tions corresponds tadditive pattern databases (APDBSs)
The idea behind various PDB heuristics is elegantly sim-
ple, and goes back to the seminal paper of Culberson
and Schaeffer (1998). For arsas™ planning taskll =
(V,A,I,G,cost), any subset of variableg’ C V de-
fines an over- approximatirrg‘ojection abstractiodlV'] =

(v, AV'1 1V GIV'] cost') of 11 by intersecting the initial
state, the goal, and aII the actions’ preconditions andeffe
with V' (Edelkamp 2001). In terms of ABS-ensembles, this
can be formalized as follows.

Definition 5 Given a sAst planning task II
(V,A,I,G,cost), and a set of variable subsets
{V1,...,Vi} of V, the pattern -database ABS-ensemble
ofT(H) is A = {(T;, i, B:) }_, where, forl <i <k,

— T, = (Si, Li, Try, st, S¢) is a TG-structure withS; =
dom(V;), L; = = AVl sl = vl S¢ = {s
S¢Y, and, overaII,|Z| = O(poly(|11])),

— a;(s) = sV, andB;(al"?)) = q,

— {a;(s),l, ai(s")) € Ty iff (s,1,s") € Tr.

While any additve PDB abstraction.A
{{T;, @),)}k, &n A€ induces an (admissible)
additive heuristid 4, so far, the actual choice of abstraction
(that is, the actual action-cost partitioning strategyy ha
remained an open issue (Yang, Culberson, & Holte 2007).
This is exactly where LP-optimization gradually comes into
the picture.

Without loss of generality, let the number of pattekrzse
O(poly(IT)). Computingh 4 = Y5, dist(cv(s), S¢) fora
fixed APDB abstractiod = {{(7;, @;), a;)}f_, €n AE s
usually done by computing eachist(«;(s), S&) using the
Dijkstra algorithm over thexplicitly constructedransition
graph(7;,w;). However, the corresponding single-source
shortest path problem also has an elegant LP formulation.
Given a directed grapty = (N, E)) and a source node €
N, if d(v') is a variable corresponding to the shortest-path
length fromw to v/, then the solution of the linear program

m_:atXZ d(v
d

st.d(v) =0
d(") <d@") +w',v"),

induces a solution to the single-source shortest path nobl
overG and source.

Given that, a compact LP- encodrng of a pattern-database
ABS-ensembleAf = {(7;,c;,3;)}k_, is obtained by
(i) putting together the linear constraints as in Eq. 6 for
TG-structuresT;, (ii) replacing the edge-weight constants
w(v’,v") by variables associated with the corresponding
transition labels, and (iii) connecting the latter labest
variables with the proper additivity constraint. Specifica
given asAs™ planning taskl = (V, A, I, G, cost), and a

(6)

V(' 0") e R

pattern-database ABS-ensemblé = {(7;, a;, 3;)}%_, of
7(II), the LP-encoding construction is as follows.

First, let the label-cost variabl@s contain a variable,
for every abstract action’ € U™, AVl; the additivity con-
straints are defined in terms of these label-cost variables e
actly as in Eg. 4. Now, given a stateof II, we specify
the LP-encoding(s) = (7, f(7),CA¢ (zw)) of AE with
respect tos as

k
7 = J{d(s) | s € S} U{d(Gi)}
i=1
d(s") <d(s") +wae, Y(s",d',s") € Tr;
CAE = {d(s’) =0, s' = slVil , Vi
d(G;) < d(¢), s' e 8¢
k
J(&) = _d(Gi)

Since each TG-structurg; in a pattern-database ABS-
ensembleA€ is of sizeO(poly(|I1])), it is immediate that
the above LP-encoding of€ is both compact and poly-time
constructible for any state of II. Hence, we havé 4¢(s)
being poly-time computable for any planning tadk any
pattern-database ABS-ensembl€, and any state of 1I.
Moreover, the same single-source shortest-path problams o
explicit transition graphs underlie heuristics corresponding
to additional powerful homomorphism abstractions such as
constrained PDBs (Haslum, Bonet, & Geffner 2005), and
merge-and-shrink abstractions (Helmert, Haslum, & Hoff-
mann 2007). Hence, using the “composition” Theorem 4,
we can summarize here with a tractability claim that covers
arbitrary combinations of such abstractions.

Theorem 5 Given asAs"™ planning taskil, and an ABS-
ensembled€ = {(T;, a;, Bi)}5_, of T(IN), if S2F | |T5| =
O(poly(|11])), then A€ is LP-optimizable, and thus 4¢(s)
is poly-time computable for every statec S.

Hybrid Abstractions:
Fork-Decomposition Structural Patterns

The basic idea behind structural patterns is in abstract-
ing the problem in hand into instances of provably tractable
fragments of optimal planning, alleviating by that the lim-
itation of PDBs to use projections of only low dimen-
sionality. In particular, Katz and Domshlak (2008b) spec-
ify a family of causal-graph structural pattern€CGSPs),
and introduce a concrete instance of CGSPs cdibek-
decomposition In a one-paragraph summary, the mecha-
nism of fork-decomposition works as follows.

The causal graptCG(II) (V,E) of a sas™ plan-
ning taskIl = (V,A,I,G,cost) with variablesV =
{v1,...,v,} is a digraph over node¥. An arc (v,v’)
belongs toCGI) iff v # o and there exists an action
a € A such thaeff(a)[v'], and eithelpre(a)[v] or eff(a)[v]
are specified. For each variahlge V, let Vif C V contain
v; and all its immediate successors@&(11), andV; C V
containu; and all itsimmediate predecessor€d6(IT). The
fork-decomposition ofI is obtained by

(1) schematically constructing a set of projection homomor
phism abstractionl = {I11V:J, TI[V:1}7_, (with, possi-
bly, each|V;f| and eachV;| being©(n)),

(2) reformulating the actions of the abtractions to single-
effect actions only so that the causal graphEGf! and
111V:] become “forks” and “inverted forks”, respectively,
rooted inv;; after this action reformulation, the individ-
ual abstractions may cease being purely homomaorphic,

(3) within each1!!], abstracting the domain of to {0, 1},
and within eacHI[V:], abstracting the domain of, to

{0,1,...,k}withk = O(1).
This decomposition of II provides us with
the fork-decomposition ABS-ensemble A& =

{7, of, 67), (T, ok,)}, of T, with
the abstraction mappings, o!. and the action associations

f 3l being established along the above steps (1-3). The
additive abstractions of such an ABS-ensempBlé are
of interest because (i) they can provide quite informative
heuristic estimates, and (i) each abstract problem in
I = {111, 11Vi1}7_, can be solved in polynomial time by
special-purpose algorithms for the corresponding fragmen

PDB heuristics and their enhancements are successfully ex-of sas™ (Katz & Domshlak 2008b). However, here as well,

ploited these days in the planning systems (Haslum, Bonet,

& Geffner 2005; Haslunet al. 2007). However, since the
reachability analysis ifiIlV:] is done by exhaustive search,

each pattern of a PDB heuristic (that is, each selected vari-

able subsel;) is required to be as small &(log |V]) if
|dom(v)] = O(1) for eachv € V;, and as small a®(1),
otherwise. For many planning domains this constraint im-
plies an inherent scalability limitation of the PDB heuris-
tics. One attack on this limitatiowithin the scope of homo-

the choice of the actual abstraction with respecit® is
important, and optimizing this choice is clearly of intdres
Interestingly, LP-optimization can come to the rescue here
as well, and this despite the TG-structures4#f not being
searchable explicitly in polynomial time.

Theorem 6 For any SAS™ planning task II over n
variables, the fork-decomposition ABS-ensemdig

(i, of, g), (T, ol gy}, of T(I0) is LP-

morphism abstractions correspond to the (already covered optimizable, and thug 4 (s) is poly-time computable for

by Theorem 5) merge-and-shrink abstractions that sophisti
catedly compress the abstract transition graphs to keep the
within the reach of exhaustive graph searching (Helmert,
Haslum, & Hoffmann 2007). Another recent proposal gen-
eralizes PDB abstractions to what is callductural pat-
terns(Katz & Domshlak 2008b).

every states € S.

Our LP-encoding of a fork-decomposition ABS-ensemble
AE corresponds to LP reformulations of the algorithms of
Katz and Domshlak (2008b) for fork and inverted-fork prob-
lems with properly bounded root domains. Below we de-

scribe such an LP-encoding for an ABS-ensemble consist- (ii) For eachv € V' \ {r}, ¥ € dom(v),

ing of a single fork-structured abstraction with a binargtro
domain.

Given asAs™ planning taskl = (V, A, I, G, cost), let
A€ = {(T(OTF), of, 3")} be a fork-decomposition df(IT)
over a single fork rooted im € V. Considering that ab-
stract problem, let us denote its variablesiby its actions

by A’, and its goal stat&!V'] by G’. We can assume that
GJv] is defined for al € V' \ {r}; all the goal-less leafs
can be simply omitted from the fork. For coherence with the
notation of Katz and Domshlak (2008b) we denote the (ab-
stracted to binary-valued) domainoby dom(r) = {0,1}
such thats[r] = 0. Leto(r) be a0/1 sequence of length
14+ max,cy- |[dom(v)|, and, forl <i < |o(r)], o(r)[i] =0
if 7 is odd, and= 1, if ¢ is even. Let>*[o(r)] be the set of all
non-empty prefixes af (r) if G[r] is unspecified, and other-
wise, be the set of all prefixes ofr) ending withG|r].

First, let the label-cost variablég contain a variablev,
for every abstract actiom’ € A’; the additivity constraints
C*dd(w) are defined in terms of these label-cost variables
via f as in Eqg. 4. Now, given a stateof II, we specify
the LP-encoding(s) = (7', f(Z),CA¢ (zw)) of AE with
respect tos as follows. The variable séf of £(s) consists
of three types of variables, notably

7= {h} u | {dwv,9)} v {9,909}

veV/\{r}, veV\{r},
vedom(v), 9,9’ €dom(v),
1<i<|o(r)| 9,-€{0,1}

The variableh! stands for the minimal cost of solving our
fork-structured problem, and the objective function(df)

is simply f(7') = hf. Each variablei(v,?,i) stands for
the cost of the cheapest sequence of actions affeating
that changes its value fros{v] to ¢ giventhat the value
changes of induce a0/1 sequence of length Each vari-
ablep(v, 9,9, 9,) stands for the cost of the cheapest se-
guence of actions affectingthat changes its value froth

to ¥ havingfixedthe value ofr to ¥,. The constrain4¢

of L(s) consists of the following sets of linear constraints.

(i) For all goal-achieving sequences € >*[o(r)] of
value changes of, and each pair af-changing actions
a,a’ € A’ such thatff(a)[r] = 1 andeff(a’)[r] = 0,

W< S dw, Gl o7t
veV/\{r}
Semantics: The cost of solving the problem is not
greater than the sum of achieving the goal values for
all the leafs given a value sequence of the root, plus
the cost of providing that value sequence.

(i) Foreachleaby € V' \ {r},
d(v, s[v],0) =0
and, for each?, ¥’ € dom(v), andl < i < |o(r)],
d(v, ;1) <d(v,9,i — 1) + p(v, 9,9, 0(r)[i])

Semantics: The cost of achievimy from s[v] given
|o(r)| = i is bounded by the cost of achievidgiven
|o(r)] =i — 1, and achieving’ from ¥ giveno (r)[i].

ol -1

2

Jrwar

Jrwa+|

p(v,9,9,0) =0, p(v,9,9,1) =0

Likewise, for eachv-changing actiona € A’, if
pre(a)[r] is unspecified, then, faf, € {0, 1},

p(v, 3, eff(a)[v],9;) < p(v, 9, pre(a)[v], ¥r) + w,
and otherwise,

p(v, 9, eff(a)[v], pre(a)[r])
< p(v, 3, pre(a)[v], pre(a)[r]) + wa

Semantics: Shortest-path constraints as in Eq. 6.

This finalizes our LP-encoding for an ABS-ensemble con-
sisting of a single fork-structured abstraction with a Ijna
root domain. Due to the lack of space, here we omit the de-
tails of the LP reformulation of the algorithm for inverted
forks—while that algorithm differs from this for forks, the
general spirit of the corresponding LP-encoding is quite si
ilar. Finally, extending these encodings to ABS-ensembles
containing multiple such forks and inverted forks (and pos-
sibly some other LP-optimizable abstractions) is guakhte
by the “composition” Theorem 4.

Structural Patterns and Tree-structured COPs

Fork-decomposition structural patterns are grounded i tw
specific fragments of tractable cost-optimal planning. In
principle, it is possible that structural patterns based on
some other such fragments also lead to LP-optimizable
ABS-ensembles. Here we consider two such fragments that
have been recently characterized by Katz and Domshlak
(2008a). Both these fragments correspond to problems over
binary-valued state variables and actions inducing a poly-
tre€® causal graph. In the first fragmem,, all the causal
graph’s nodes hav@(1)-bounded in-degree. In the second
fragment,P(1), all actions ard-dependent.

While the poly-time solution schemes provided by Katz
and Domshlak foP;, andP (1) substantially differ one from
another, they both correspondreductions of the planning
problems to compact and tree-structured constraint opti-
mization problems (COPs)This joint property ofP;, and
P(1) (that might also hold for some other problem frag-
ments as well) turns out to be very helpful to our objective of
joining P;,- andP(1)-based structural patterns to thie4c-
friendly” family of LP-optimizable ABS-ensembles.

Let us start by considering a general, tree-structured con-
straint optimization problen€COP = (X, F) over finite-
domain variablesy, functional component%, and the ob-
jectivemin Z%F ©(X). Fixing an arbitrary rooting of the
COP’s constraint network at € X, in what follows we re-
fer to that rooted tree of OP via its set ofdirectededges
E {(z,2")}. In these terms, we hav& = {y¢, :
dom(y) x dom(z) — R°* | (y,) € E}.

Itis well-known that tree-structured COPs as above can be
solved in low polynomial time by a dynamic-programming-
style, message-passing algorithm (Dechter 2003). The bad
news is that (similarly to what we had with the Dijkstra

3Polytree is a DAG with an acyclic induced undirected graph.

algorithm for solving PDBs) we cannot use this message- and (ii) for eachp, adding its linear constraints as in Eq. 8.
passing algorithm for our needs. The good news, how- The extended program is still linear, and we still have
ever, is that such tree-structured COPs can also be solved

via linear programming. Specifically, given such a problem _ dminX Z o(T) = max heP
COP = (X, F), let Tedom() eF cawe
T =y | J{e(l®)} wherez andw are assignments {6’ = J; 7' and action-
& Der, cost variablesw, respectively, and7#“°F is the convex
7 edom(a’) polyhedron specified by thesetendedinear constraints.

Now, given a sAs™ planning tasklIl, let A =
be a set of non-negative, real-valued variables, with the se {(7(IT'), «, 8)} be a single-abstraction ABS-ensemble of
mantics of eack(z|z") being “optimal solution for the sub- 7(IT) such that cost-optimal planning fdt’ is reducible
tree rooted at givenz’ = 7. Then, the solution of LP to a tree-structured constraint optimization probleeP
satisfying Eq. 8. The extended linear program specified
above provides the basis for the LP-encoding of such ABS-
ensembles. First, as before, let the label-cost variables
W contain a variablev, for every abstract action’ €

max hP
<

St.VF € dom(r): heP < Z c(z|r),

(ra)el @) A’; the additivity constraint€24d(w) are defined in terms
V(x,y) € E,T € dom(x),y € dom(y) : of these label-cost variables vid as in Eq. 4. Now,
_ _ - given a states of II, we specify an LP-encoding(s) =
c(ylz) < Z c(2[7) + ¢y (T, 7). (T, f(T),CA¢ (zw)) of AE with respect tas as follows.
w.=)eE e The variable sefz’ = ¢Z consists of the variables of
induces a solution foEOP. Egs. 7 and 8, and the objective 6ts) is f (') = heP.
e The constrainC4¢ (zw) of L£(s) consists of all the lin-
Lemma 1 Given a tree-structured constraint optimization ear constraints from Eq. 7, as well as the constraint
problemCOP = (X, F) over finite-domain variabled’ and Ag - 25w < by from Eq. 8 for all functional-component
functional component&, we have valuesp of COPy.
. This finalizes the desired LP-encoding; extending it
elnin > @ = max h** to such multiple-abstraction ABS-ensemble$s =
CEEE) perF s {(T(O1}), o, Bi) }_, (and, again, possibly some other LP-

COP ; . i optimizable abstractions) is, again, guaranteed by thm“co
where %" is the convex polyhedron specified by the lin- position” Theorem 4.

ear constraints as in Eq. 7.
. . . Theorem 7 Given asAs™ planning taskil, and an ABS-
With Lemma 1 in hand, we now make two additional steps _ / P A % ; _
d Lp di f ABS 2 ensembleA& {(T(11}), s, Bs) }7—q OF T(II), if k
tc:waz S ?n tt—enco 'ch pbl X —tenseerJéét CC()jntéllg;:l;lg iy Olpoly(T])), and cost-optimal planning for eacH; is
S ruﬁ uramggt_ %msl reduci eI 0 ree-s ru<r:] urel OFS. - In poly-time reducible to a compact and tree-structured con-
efac shufc Vi ula structural pattern, ehac valys (7, 7) 4 Straint optimization problem satisfying Eq. 8, theff is
of each functional componeat, is somehow pre-computed | p_gntimizable, and thua e (s) is poly-time computable
from the costs of the actions. In our case, however, the for ever
; .) y states € S.
costs of the actions in the abstract problems are not fixed
in advanced, but should be determined by the process of LP- The last but not least is, of course, the question of whether
optimization. This is where our next steps come into the the requirement posed by Eq. 8 is any realistic with respect

picture. to the COPs induced by the abstract planning problems. For-
Consider a single COP-reducible cost-optimal planning tunately, Theorem 8 closes the story with some very good
problem. Firstsupposeéhat, for anyfixedaction-costs vec- news on that matter.

tor w, each functional-component valee= ¢, (Z,7) cor-
responds to a solution value of some compact (canonical Theorem 8 Cost-optimal planning for any tasi in P, U
form) linear program P(1) is poly-time reducible to a compact and tree-structured

constraint optimization problem satisfying Eqg. 8.
max fo(Z5w) P p fying Eq

s.t. Az 750 < by (8) Discussion
w < wi Numerous recent works have suggested that additive ensem-

bles of admissible heuristics is a powerful tool for heugist
whereA; andb; are a matrix and a vector of coefficients, search systems. However, the action-cost partitioning pa-
respectively. If so, then, givew!, we can reformulate rameter of such ensembles kept the “how to add (if at all)”
the linear program in Eq. 7 by (i) replacing tleenstants question totally open. Here we described a procedure that
vy (Z,7) by the corresponding affine functioﬁ@(?wuﬂ;’), closes this question for arbitrary ensembles of all known to

us abstraction-based heuristics such as PDBs, constrainedfriendly” LP-relaxations forh*, action-ordering relaxation,

PDBs, merge-and-shrink abstractions, fork-decompasitio
structural patterns, and structural patterns based otabiac
constraint optimization. The procedure is based on a
linear-programming formulation of the optimization prob-
lem: given a classical planning task, a forward-searcle stat

and a set of abstraction-based admissible heuristics, con-

struct an optimal additive composition of these heuristics
with respect to the given state. Most importantly, the time
complexity of our procedure is polynomial for arbitrary en-
sembles of all the above abstraction-based heuristics. We
now outline some of the (in our opinion) more important
challenges for future work.

Structure optimization. Probably the most important is-
sue that remains almost entirely open is this of “structure
optimization”. While our framework optimizes the compo-
sition of agivenset of TG-structures, ultimately we would
like to move to even more parametric such ensembles, allow-
ing flexibility in the actual choice of TG-structures. For in
stance, it would clearly help to know what PDBs should (op-
timally) be added to the ensemble, what domain abstractions
should (optimally) be performed on the roots of the inverted
forks and forks, what polytrees should (optimally) span the
causal graph of the problem, etc. Note that the first step in
this direction has already been made between the lines of
this paper—an immediate corollary of Theorem 5 is that, for
any forward-search stateand anyfixed upper bound on the
size of the PDBsone can construct in polynomial time the
actualoptimal (for s) pattern-database ABS-ensemtded
this simply by running LP-optimization over the ensemble
of all possible such PDBs.

Additive m-reachability. As we mentioned, the sem-
inal m-reachability heuristicé™ are not covered by our
framework. While computing a single™ heuristic for a
fixedm is poly-time,h™ is not based on a problem abstrac-
tion (even in the very permissive sense of Definition 1)—
the state-graph over whidfi” is computed is an AND/OR-

graph (and not an OR-graph such as transition graphs), each

original problem state is mapped tcsat of abstract states

(and not to a concrete such state), and the actual computa-

tion of ™ corresponds to computing a critical tree (and not
a shortest path) to the goal. Tangentially, the problem of
computing a critical-tree in an AND/OR-graph does not ap-
pear to have an LP reformulation. Hence, the complexity of
computing optimal additivé™ heuristics is still open and
very much interesting.

LP-encodings for “double relaxations”. The basic
idea of LP-optimizing heuristic composition naturally ex-
tends also taintractable planning relaxations that admit
“second-order” LP-relaxations. For instance, some in-
tractable planning relaxations formalizable via sounds an
complete integer-valued LPs (such as the deletes-ignoring
relaxation underlying ™, or more recent action-ordering re-
laxation of van den Briel (2007)) appear to be quite natural
such candidates. Things, however, are more complicated
than that because, very roughly, (i) Definition 4 requires a
very specific type of LP-encodings (satisfying Eg. 5), and
(ii) none of the known to us ILP-to-LP “second-order” re-
laxations appear to be of that type. Hence, developing “Eq. 5

and other informative yet intractable planning relaxagicn
now definitely of interest.

Finally, we would like to address an almost immediate
source of skepticism with respect to the practicality of our
optimization procedure—using it requires solving a larée L
at every search node, while typically such per-node compu-
tations are expected to be lofv polynomial time. We be-
lieve, however, that the superior informativeness of the op
timal additive heuristics has a clear potential to evemjual
overweight the cost of heuristic computation due to substan
tial reductions in the number of expanded search nodes. In
other words, while the informal notion of “low polynomial
time” changes with the progress of hardware technology, it
is widely believed these days thatZ NP, and thus reduc-
ing the amount of expanded nodes is still the most important
objective of the heuristic-search research in the long run.

References

Backstrom, C., and Nebel, B. 1995. Complexity results for
SAS" planning.Comp. Intell.11(4):625-655.

Bylander, T. 1994. The computational complexity of
propositional STRIPS plannind\lJ 69(1-2):165—-204.
Culberson, J., and Schaeffer, J. 1998. Pattern databases.
Comp. Intell.14(4):318-334.

Dechter, R. 2003Constraint ProcessingMorgan Kauf-
mann.

Edelkamp, S. 2001. Planning with pattern databases. In
ECP, 13-34.

Felner, A.; Korf, R. E.; and Hanan, S. 2004. Additive
pattern database heuristicB\IR22:279-318.

Haslum, P.; Botea, A.; Helmert, M.; Bonet, B.; and Koenig,
S. 2007. Domain-independent construction of pattern
database heuristics for cost-optimal planning. AAAI
1007-1012.

Haslum, P.; Bonet, B.; and Geffner, H. 2005. New admis-
sible heuristics for domain-independent planningARA
1163-1168.

Helmert, M.; Haslum, P.; and Hoffmann, J. 2007. Flexible
abstraction heuristics for optimal sequential planning. |
ICAPS 176-183.

Katz, M., and Domshlak, C. 2008a. New islands of
tractability of cost-optimal planninglAIR32.

Katz, M., and Domshlak, C. 2008b. Structural patterns
heuristics via fork decomposition. ICAPS (this volume)
Pearl, J. 1984Heuristics — Intelligent Search Strategies
for Computer Problem SolvingAddison-Wesley.

van den Briel, M.; Benton, J.; Kambhampati, S.; and
Vossen, T. 2007. An LP-based heuristic for optimal plan-
ning. INnCP, 651-665.

Yang, F.; Culberson, J.; and Holte, R. 2007. A general
additive search abstraction. Technical Report TR07-06, CS
Depart., Univ. of Alberta. (Extended abstracSARA-07.

