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Abstract

We describe a procedure that takes a classical planning task,
a forward-search state, and a set of abstraction-based admis-
sible heuristics, and derives anoptimaladditive composition
of these heuristics with respect to the given state. Most im-
portantly, we show that this procedure ispolynomial-timefor
arbitrary sets of all known to us abstraction-based heuristics
such as PDBs, constrained PDBs, merge-and-shrink abstrac-
tions, fork-decomposition structural patterns, and structural
patterns based on tractable constraint optimization.

Introduction
Admissible heuristics are critical for effective planning
when either optimal or approximately-optimal solutions are
required. As automated planning is known to be NP-hard
even for extremely conservative problem formalisms (By-
lander 1994), no heuristic should be expected to work well
in all planning tasks. Moreover, even for a fixed planning
task, typically no tractable heuristic will home in on all the
“combinatorics” of the task in hand. The promise, however,
is that (i) different heuristics will target different bolts of
the planning complexity, and (ii) composing the individual
strengths of numerous heuristics could allow us both solv-
ing a larger range of planning tasks, as well as solving each
individual task more efficiently.

Since the late 90’s, numerous (though not many) ad-
missible heuristics for domain-independent planning have
been suggested and found useful, and research in this di-
rection becomes more and more active. In this paper we
focus on the old question of how one should better orches-
trate a set of admissible heuristics in the effort of solv-
ing a given planning task. One of the well-known and
heavily-used properties of admissible heuristics is that tak-
ing the maximum of their values maximizes informative-
ness while preserving admissibility. A more recent, alter-
native approach to orchestrating a set of admissible heuris-
tics corresponds to carefully separating the information used
by the different heuristics in the set so that they values
could be summed up instead of maximized over. This di-
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rection was first exploited in the works on additive pat-
tern database (APDB) heuristics (Edelkamp 2001; Felner,
Korf, & Hanan 2004), and more recently it was applied in
the scope of constrained PDBs,m-reachability, and struc-
tural patterns heuristics (Haslum, Bonet, & Geffner 2005;
Katz & Domshlak 2008b). The basic idea underlying all
these “additive heuristic ensembles” is elegantly simple:for
each problem’s actiona, if it can possibly be counted by
more than one heuristic in the ensemble, then one should
ensure that the cumulative accounting for the cost ofa does
not exceed its true cost in the original problem.

Until very recently, such “action-cost partitioning” was
achieved in one certain manner by accounting for the whole
cost of each action in computing a single heuristic, while
ignoring the cost of that action (by setting it to zero) in com-
puting all the other heuristics in the set (Edelkamp 2001;
Felner, Korf, & Hanan 2004; Haslum, Bonet, & Geffner
2005). Recently, this “all-in-one/nothing-in-rest” action-
cost partitioning has been generalized by Katz and Domsh-
lak (2008b) and Yanget al. (2007) toarbitrary partitioning
of the action cost among the ensembles’ heuristics.

The great flexibility of additive heuristic ensembles, how-
ever, is a mixed blessing. For good and for bad, the method-
ology of taking the maximum over the values provided by an
arbitrary set of independently constructed admissible heuris-
tics is entirely non-parametric. In contrast, switching toad-
ditive heuristic ensembles requiresselecting an action-cost
partitioning scheme, and this decision problem poses a num-
ber of computational challenges. In particular,

1. The space of alternative choices here is verbally infiniteas
the cost of each action can be partitioned into an arbitrary
set of non-negative real numbers, sum of which does not
exceed the cost of that action.

2. At least in domain-independent planning, this decision
process should be fully unsupervised.

3. The last but not least, the relative quality of each action-
cost partition (in terms of the informativeness of the re-
sulting additive heuristic) may vary dramatically between
the examined search states. Hence, the choice of the
action-cost partitioning scheme should ultimately be a
function of the search state in question.

These issues may explain why all previous works on
(both domain-dependent and independent) additive heuris-



tic ensembles adopt this or another ad hoc (and search-
state independent) choice of action-cost partitioning. As
the result, all the reported empirical comparative evaluations
of various max-based and additive heuristic ensembles are
inconclusive—for some search states along the search pro-
cess the (pre-selected) additive heuristics’ combinationwas
dominating the max-combination, while for the other states
the opposite was the case. In the context of domain-specific
APDBs, Yanget al. (2007) conclude that “determining
which abstractions [here: action-cost partitioning schemes]
will produce additives that are better than max over stan-
dards is still a big research issue.”

The contribution of this paper is precisely in addressing
the problem of choosing the right action-cost partitioning
over a given set of heuristics. Specifically, we

• Provide a procedure that, given (i) a classical planning
taskΠ, (ii) a forward-search states of Π, and (iii) a set
of admissible heuristics based on over-approximating ab-
stractions ofΠ, derives anoptimal action-cost partition-
ing for s (that is, a partitioning that maximizes the heuris-
tic estimate of that state). The procedure isfully unsuper-
vised, and is based on a linear programming formulation
of that optimization problem.

• Show that the time complexity of our procedure ispoly-
nomial for arbitrary sets ofall known to us abstraction-
based heuristic functions. In particular, such “procedure-
friendly” heuristics include PDBs (Edelkamp 2001; Yang,
Culberson, & Holte 2007), constrained PDBs (Haslum,
Bonet, & Geffner 2005), merge-and-shrink abstrac-
tions (Helmert, Haslum, & Hoffmann 2007), fork-
decomposition structural patterns (Katz & Domshlak
2008b), and structural patterns based on tractable con-
straint optimization (Katz & Domshlak 2008a).

Notice that, in particular, the estimate provided by a max-
based ensemble corresponds to the estimate provided by the
respective additive ensemble undersomeaction-cost parti-
tioning. As such, the max-estimate cannot exceed the one
provided by the optimal action-cost partitioning, and thus,
at least for the abstraction-based heuristics, we answer the
aforementioned question of “to add or not to add”.

Background
We consider the standard setting of cost-optimal classical
planning for problems described using theSAS+ represen-
tation language (Bäckström & Nebel 1995). ASAS+ plan-
ning task is a quintupleΠ = 〈V , A, I , G, cost〉, where

• V = {v1, . . . , vn} is a set ofstate variables, each associ-
ated with a finite domaindom(vi); each complete assign-
ments to V is called astate. I is aninitial state, and the
goal G is a partial assignment toV .

• A is a finite set ofactions, where each actiona is a pair
〈pre(a), eff(a)〉 of partial assignments toV calledprecon-
ditionsandeffectsof a, respectively, andcost : A → R

0+

is a non-negative real-valuedaction cost function.

The semantics of a planning taskΠ is given by its induced
state-transition model, often also calledtransition graph.
Searching in this transition graph corresponds to forward

state-space search. In what follows we distinguish between
the actual edge-weighted transition graph, and its weights-
omitted, qualitative skeleton which we calltransition-graph
structure. Informally, transition-graph structures capture
the combinatorics of the classical planning problems, while
transition graphs annotate this combinatorics with “perfor-
mance measures”.

• A transition-graph structure (or TG-structure , for
short) is a quintupleT = (S, L, Tr, sI , SG) whereS is
a finite set ofstates, L is a finite set oftransition labels,
Tr ⊆ S × L × S is a set of (labeled)transitions, sI ∈ S
is aninitial state, andSG ⊆ S is a set ofgoal states.

• A transition graph is a pair〈T, ̟〉 whereT is a TG-
structure with labelsL, and̟ : L → R

0+ is a transition
cost function. For a states ∈ S and a subset of states
S′ ⊆ S in T, thedistancedist(s, S′) in 〈T, ̟〉 is the cost
of a cheapest (with respect to̟) path froms to a state
in S′ along the transitions ofT. Any path fromsI to SG

is a plan for 〈T, ̟〉, and cheapest such paths are called
optimal plans.

The states of the TG-structureT(Π) induced by aSAS+

planning taskΠ = 〈V , A, I , G, cost〉 are the states ofΠ, the
transition labels ofT(Π) are the actionsA, and(s, a, s′) ∈
Tr iff (i) s[v] = pre(a)[v] wheneverpre(a)[v] is specified
and (ii) s′[v] = eff(a)[v] if eff(a)[v] is specified, and other-
wises′[v] = s[v]. The actual transition graph induced byΠ
is 〈T(Π), cost〉.

Additive Admissible Heuristics
Our focus here is on additive ensembles of admissible
heuristics, or simply,additive heuristics. Very often,
each individual admissible heuristic for domain-independent
planning is defined as the optimal cost of achieving the goals
in an over-approximatingabstractionof the planning prob-
lem in hand1 (Pearl 1984). Such an abstraction is obtained
by relaxing some constraints present in the problem, and the
desire is to obtain a tractable (that is, solvable in polyno-
mial time), yet informative abstract problem. In turn, by
additive abstractionwe refer to a set of abstractions, inter-
constrained by a requirement to jointly not over-estimate the
transition path costs of the original problem.

Definition 1 An additive abstraction of a transition graph
〈T, ̟〉 is a set of pairsA = {〈〈Ti, ̟i〉, αi〉}

k
i=1 where, for

1 ≤ i ≤ k, 〈Ti, ̟i〉 is a transition graph with structure
Ti = (Si, Li, Tri, s

I
i , S

G
i ), αi : S → Si is a function called

abstraction mapping, αi(s
I) = sI

i , αi(s) ∈ SG
i for all s ∈

SG, and, for each pair of statess, s′ ∈ S, holds

k
∑

i=1

dist(αi(s), αi(s
′)) ≤ dist(s, s′). (1)

Fork = 1, Definition 1 formalizes standard, non-additive
abstractions, while fork ≥ 1 it poses only a general require-
ment of not overestimating the distances. For our objective

1Admissible heuristics may also correspond to problem refor-
mulations that are not abstractions; see our discussion later on.



of dealing with action-cost partitioning, we need a tighter
binding between the original and abstract TG-structures.
Specifically, we need to (i) associate each abstract transition
label with a single original transition label, and (ii) verify
that each original transition corresponds to an appropriate
set of abstract transitionpaths.

Definition 2 An ensemble of abstractions (ABS-
ensemble) of a TG-structureT = (S, L, Tr, sI , SG)
is a set of tripletsAE = {〈Ti, αi, βi〉}

k
i=1 where, for

1 ≤ i ≤ k,
– Ti = (Si, Li, Tri, s

I
i , S

G
i ) is a TG-structure,

– αi : S → Si is an abstraction mapping, andβi : Li →
L is anaction-associating mapping,

– αi(s
I) = sI

i , andαi(s) ∈ SG
i for all s ∈ SG,

– for each transition〈s, l, s′〉 ∈ Tr, there is a pathρ from
αi(s) to αi(s

′) in Ti such that (i) all the transitions onρ
have different labels, and (ii) for each labell′ alongρ,
holdsβi(l

′) = l.

The notion of ABS-ensembles allows us generalizing the
qualitative skeletons of various additive abstractions that are
based on action-cost partitioning. In particular,
• The setting of allβi being bijective mappings captures ad-

ditive homomorphism abstractionssuch as (standard and
constrained) APDBs (Yang, Culberson, & Holte 2007;
Haslum, Bonet, & Geffner 2005), as well as (addi-
tive) merge-and-shrink abstractions (Helmert, Haslum, &
Hoffmann 2007).

• The (possibly confusing at first view) setting of allαi be-
ing injective (with, possibly,|S| < |Si|) captures addi-
tive embedding abstractions, obtained by expanding the
original action set by some new actions derived from the
original ones. In such cases, the new actions are con-
structed with certain desired properties such as positive
and/or unary effects only (Bylander 1994), etc.

• Each individual abstraction in an ABS-ensemble may
correspond to ahybrid (homomorphism/embedding) ab-
straction such as these induced by some structural pat-
terns (Katz & Domshlak 2008b).

• Importantly, nothing in the definition of ABS-ensemble
prevents us from using anarbitrary mixtureof the above
three types of abstractions.

First things first, however, Theorem 1 relates ABS-
ensembles and additive abstractions induced by the former
via action-cost partitioning (expressed by Eq. 2). Worth not-
ing here that the generality of Definition 2 and Theorem 1
is not for an exercise only—later we exploit it to establish
some computational results of an adequate generality. (Due
to the lack of space, the proofs are given in the full TR.)

Theorem 1 (Additive Abstractions) Let T be a TG-
structure with labelsL, and letAE = {〈Ti, αi, βi〉}

k
i=1 be

an ABS-ensemble ofT. For any function̟ : L → R
0+, and

any set of functions̟ i : Li → R
0+, 1 ≤ i ≤ k, such that

∀l ∈ L :

k
X

i=1

X

l′∈β
−1

i
(l)

̟i(l
′) ≤ ̟(l), (2)

we haveA = {〈〈Ti, ̟i〉, αi〉}
k
i=1 being an additive ab-

straction of the transition graph〈T, ̟〉.

The proof of Theorem 1 is completely technical by
connecting Definitions 1 and 2. In what follows, if
Π = 〈V , A, I , G, cost〉 is a SAS+ planning task,AE =
{〈Ti, αi, βi〉}

k
i=1 is an ABS-ensemble ofT(Π), and{̟i :

Li → R
0+}k

i=1 is a set of transition cost functions, we say
thatA = {〈〈Ti, ̟i〉, αi〉}

k
i=1 is an additive abstraction of

Π with respect toAE, denoted byA AΠ AE, if

∀a ∈ A :

k
∑

i=1

∑

l∈β
−1

i
(a)

̟i(l) ≤ cost(a) (3)

In other words, each additive abstractionA AΠ AE cor-
responds to a certain action-cost partitioning ofΠ overAE
and, importantly, vice versa.

Definition 3 Let Π = 〈V , A, I , G, cost〉 be aSAS+ plan-
ning task with state setS, andAE = {〈Ti, αi, βi〉}

k
i=1 be

an ABS-ensemble ofT(Π). For any additive abstraction
A = {〈〈Ti, ̟i〉, αi〉}

k
i=1 AΠ AE, the additive heuristic

hA is the function assigning to each states ∈ S the quan-
tity

∑k

i=1 dist(αi(s), S
G
i ). Theoptimal additive heuristic

hAE is the function assigning to each states ∈ S the quan-
tity maxAAΠAE hA(s).

Definition 3 specifies the set ofall additive heuristics
for Π obtainable via action-cost partitioning over a given
ABS-ensemble. Most importantly, it also specifies anupper-
boundon the heuristic estimatehAE(s) that can possibly be
obtained for a states on the basis of that (infinite) set of ad-
ditive heuristics. The admissibility of each heuristichA in
that space is immediate from Definition 1, and thus the proof
of Theorem 2 is straightforward.

Theorem 2 (Optimal Admissibility) For any SAS+ plan-
ning taskΠ = 〈V , A, I , G, cost〉, any ABS-ensembleAE of
T(Π), and any states of Π, we havehAE(s) ≤ dist(s, SG).

LP-Optimization
Having specified the notion of optimal additive heuristic
hAE , we now proceed with the computational part of the
story. Suppose we are given aSAS+ planning taskΠ =
〈V , A, I , G, cost〉 with state setS, and an ABS-ensemble
AE = {〈Ti, αi, βi〉}

k
i=1 of T(Π). Assuming that individ-

ual additive heuristicshA can be efficiently computed for
all A AΠ AE (as it is the case with the ABS-ensembles
of practical interest), the big question now is whetherhAE

can be efficiently computed. Here we characterize a fam-
ily of ABS-ensembles for which the answer to this ques-
tion is affirmative, and show that this family comprises all
the abstraction-based heuristic schemes suggested so far for
domain-independent classical planning.

Our characterization is constructive in terms ofcom-
putability ofhAE(s) via a compact2 linear program induced

2For the sake of readability, we use “compact” as a synonym of
“being of sizeO(poly(|Π|))”.



by the triplet ofΠ, AE, and s. We begin with introduc-
ing a set of linear constraints specifying all possible cost
partitions of the actionsa ∈ A over their representatives
∪k

i=1β
−1
i (a) in the components ofAE. For each (abstract)

label l ∈ ∪k
i=1Li, let wl be a non-negative real-valued vari-

able uniquely associated withl, and let the set of all these
“label-cost” variables being denoted by−→w . The (linear)ad-
ditivity constraintCadd(−→w ) of Π onAE mirrors Eq. 3 as

∀a ∈ A :

k
∑

i=1

∑

l∈β
−1

i
(a)

wl ≤ cost(a), (4)

with H add being the convex polyhedron specified by
Cadd(−→w ). Note that there is a straightforward bijective
correspondence between the pointsw ∈ H add and (with
some abuse of notation) the additive abstractionsAw =
{〈〈Ti,w〉, αi〉}

k
i=1 AΠ AE.

Using the notion of additivity constraintCadd(−→w ), we now
proceed with characterizing our “hAE-friendly” family of
LP-optimizableABS-ensembles.

Definition 4 Let Π = 〈V , A, I , G, cost〉 be aSAS+ plan-
ning task,AE = {〈Ti, αi, βi〉}

k
i=1 be an ABS-ensemble of

T(Π), andCadd(−→w ) be the additivity constraint ofΠ onAE.
Given a states ∈ S, anLP-encodingof AE with respect

to s is a tripletL(s) = 〈−→x , f(−→x ), CAE(−→xw)〉 where−→x is a
set of non-negative real-valued variables,f is a real-valued
affine function over−→x , CAE is a set of linear constraints on
−→x and−→w , and

∀w ∈ H
add : max

xw∈H AE

f(x) = hAw
(s), (5)

whereH AE is the convex polyhedron specified byCAE ∪
Cadd.

The ABS-ensembleAE is called LP-optimizable if,
for every states ∈ S, there exists (and one can
generate in poly-time) a compact LP-encodingL(s) =
〈−→x , f(−→x ), CAE(−→xw)〉 ofAE with respect tos.

The next two theorems provide the two cornerstones
of characterizing our “hAE-friendly” family of ABS-
ensembles on the ground of their LP-optimizability.

Theorem 3 (Tractability) Given aSAS+ planning taskΠ,
and an ABS-ensembleAE of T(Π), if AE is LP-optimizable,
thenhAE(s) is poly-time computable for every states ∈ S.

Theorem 4 (Composition) For any SAS+ planning
task Π, and any set of LP-optimizable ABS-ensembles
{AE1, . . . ,AEm} of T(Π), if m = O(poly(|Π|)), then the
“composite” ABS-ensembleAE = ∪m

i=1AEi ofT(Π) is also
LP-optimizable.

With these two gratifying properties of LP-optimizable
ABS-ensembles in hand, in what follows we check whether
any of the known families of abstraction-based heuristics ac-
tually leads to such LP-optimizable ABS-ensembles. The
answer to this question turns out to be positive to a surpris-
ing extent.

Explicit Homomorphism Abstractions
Probably the most well-known family of additive abstrac-
tions corresponds toadditive pattern databases (APDBs).
The idea behind various PDB heuristics is elegantly sim-
ple, and goes back to the seminal paper of Culberson
and Schaeffer (1998). For anySAS+ planning taskΠ =
〈V , A, I , G, cost〉, any subset of variablesV ′ ⊆ V de-
fines an over-approximatingprojection abstractionΠ[V ′] =

〈V ′, A[V ′], I [V ′], G[V ′], cost′〉 of Π by intersecting the initial
state, the goal, and all the actions’ preconditions and effects
with V ′ (Edelkamp 2001). In terms of ABS-ensembles, this
can be formalized as follows.

Definition 5 Given a SAS+ planning task Π =
〈V , A, I , G, cost〉, and a set of variable subsets
{V1, . . . , Vk} of V , the pattern-database ABS-ensemble
of T(Π) isAE = {〈Ti, αi, βi〉}

k
i=1 where, for1 ≤ i ≤ k,

– Ti = (Si, Li, Tri, s
I
i , S

G
i ) is a TG-structure withSi =

dom(Vi), Li = A[Vi], sI
i = I [Vi], SG

i = {s[Vi] | s ∈
SG}, and, overall,|Ti| = O(poly(|Π|)),

– αi(s) = s[Vi], andβi(a
[Vi]) = a,

– 〈αi(s), l, αi(s
′)〉 ∈ Tri iff 〈s, l, s′〉 ∈ Tr.

While any additive PDB abstractionA =
{〈〈Ti, ̟i〉, αi〉}

k
i=1 AΠ AE induces an (admissible)

additive heuristichA , so far, the actual choice of abstraction
(that is, the actual action-cost partitioning strategy) has
remained an open issue (Yang, Culberson, & Holte 2007).
This is exactly where LP-optimization gradually comes into
the picture.

Without loss of generality, let the number of patternsk be
O(poly(Π)). ComputinghA =

∑k

i=1 dist(αi(s), S
G
i ) for a

fixed APDB abstractionA = {〈〈Ti, ̟i〉, αi〉}
k
i=1 AΠ AE is

usually done by computing eachdist(αi(s), S
G
i ) using the

Dijkstra algorithm over theexplicitly constructedtransition
graph〈Ti, ̟i〉. However, the corresponding single-source
shortest path problem also has an elegant LP formulation.
Given a directed graphG = (N, E) and a source nodev ∈
N , if d(v′) is a variable corresponding to the shortest-path
length fromv to v′, then the solution of the linear program

max
−→
d

∑

v′

d(v′)

s.t.d(v) = 0

d(v′′) ≤ d(v′) + w(v′, v′′), ∀(v′, v′′) ∈ E

(6)

induces a solution to the single-source shortest path problem
overG and sourcev.

Given that, a compact LP-encoding of a pattern-database
ABS-ensembleAE = {〈Ti, αi, βi〉}

k
i=1 is obtained by

(i) putting together the linear constraints as in Eq. 6 for
TG-structuresTi, (ii) replacing the edge-weight constants
w(v′, v′′) by variables associated with the corresponding
transition labels, and (iii) connecting the latter label-cost
variables with the proper additivity constraint. Specifically,
given aSAS+ planning taskΠ = 〈V , A, I , G, cost〉, and a



pattern-database ABS-ensembleAE = {〈Ti, αi, βi〉}
k
i=1 of

T(Π), the LP-encoding construction is as follows.
First, let the label-cost variables−→w contain a variablewa′

for every abstract actiona′ ∈ ∪m
i=1A

[Vi]; the additivity con-
straints are defined in terms of these label-cost variables ex-
actly as in Eq. 4. Now, given a states of Π, we specify
the LP-encodingL(s) = 〈−→x , f(−→x ), CAE(−→xw)〉 of AE with
respect tos as

−→x =

k
⋃

i=1

{d(s′) | s′ ∈ Si} ∪ {d(Gi)}

CAE =







d(s′) ≤ d(s′′) + wa′ , ∀〈s′′, a′, s′〉 ∈ Tri

d(s′) = 0, s′ = s[Vi]

d(Gi) ≤ d(s′), s′ ∈ SG
i

, ∀i

f(−→x ) =

k
∑

i=1

d(Gi)

Since each TG-structureTi in a pattern-database ABS-
ensembleAE is of sizeO(poly(|Π|)), it is immediate that
the above LP-encoding ofAE is both compact and poly-time
constructible for any states of Π. Hence, we havehAE(s)
being poly-time computable for any planning taskΠ, any
pattern-database ABS-ensembleAE, and any states of Π.
Moreover, the same single-source shortest-path problems on
explicit transition graphs underlie heuristics corresponding
to additional powerful homomorphism abstractions such as
constrained PDBs (Haslum, Bonet, & Geffner 2005), and
merge-and-shrink abstractions (Helmert, Haslum, & Hoff-
mann 2007). Hence, using the “composition” Theorem 4,
we can summarize here with a tractability claim that covers
arbitrary combinations of such abstractions.

Theorem 5 Given aSAS+ planning taskΠ, and an ABS-
ensembleAE = {〈Ti, αi, βi〉}

k
i=1 of T(Π), if

∑k

i=1 |Ti| =
O(poly(|Π|)), thenAE is LP-optimizable, and thushAE(s)
is poly-time computable for every states ∈ S.

Hybrid Abstractions:
Fork-Decomposition Structural Patterns

PDB heuristics and their enhancements are successfully ex-
ploited these days in the planning systems (Haslum, Bonet,
& Geffner 2005; Haslumet al. 2007). However, since the
reachability analysis inΠ[Vi] is done by exhaustive search,
each pattern of a PDB heuristic (that is, each selected vari-
able subsetVi) is required to be as small asO(log |V |) if
|dom(v)| = O(1) for eachv ∈ Vi, and as small asO(1),
otherwise. For many planning domains this constraint im-
plies an inherent scalability limitation of the PDB heuris-
tics. One attack on this limitationwithin the scope of homo-
morphism abstractions correspond to the (already covered
by Theorem 5) merge-and-shrink abstractions that sophisti-
catedly compress the abstract transition graphs to keep them
within the reach of exhaustive graph searching (Helmert,
Haslum, & Hoffmann 2007). Another recent proposal gen-
eralizes PDB abstractions to what is calledstructural pat-
terns(Katz & Domshlak 2008b).

The basic idea behind structural patterns is in abstract-
ing the problem in hand into instances of provably tractable
fragments of optimal planning, alleviating by that the lim-
itation of PDBs to use projections of only low dimen-
sionality. In particular, Katz and Domshlak (2008b) spec-
ify a family of causal-graph structural patterns(CGSPs),
and introduce a concrete instance of CGSPs calledfork-
decomposition. In a one-paragraph summary, the mecha-
nism of fork-decomposition works as follows.

The causal graphCG(Π) = (V, E) of a SAS+ plan-
ning taskΠ = 〈V , A, I , G, cost〉 with variablesV =
{v1, . . . , vn} is a digraph over nodesV . An arc (v, v′)
belongs toCG(Π) iff v 6= v′ and there exists an action
a ∈ A such thateff(a)[v′], and eitherpre(a)[v] or eff(a)[v]
are specified. For each variablevi ∈ V , let V f

i ⊆ V contain
vi and all its immediate successors inCG(Π), andV i

i ⊆ V
containvi and all its immediate predecessors inCG(Π). The
fork-decomposition ofΠ is obtained by

(1) schematically constructing a set of projection homomor-
phism abstractionsΠ = {Π[V f

i ], Π[V i
i ]}n

i=1 (with, possi-
bly, each|V f

i | and each|V i
i | beingΘ(n)),

(2) reformulating the actions of the abtractions to single-
effect actions only so that the causal graphs ofΠ[V f

i ] and
Π[V i

i ] become “forks” and “inverted forks”, respectively,
rooted invi; after this action reformulation, the individ-
ual abstractions may cease being purely homomorphic,

(3) within eachΠ[V f
i ], abstracting the domain ofvi to{0, 1},

and within eachΠ[V i
i ], abstracting the domain ofvi to

{0, 1, . . . , k} with k = O(1).

This decomposition of Π provides us with
the fork-decomposition ABS-ensemble AE =

{〈T(Π[V f
i ]), αf

i, β
f
i〉, 〈T(Π[V i

i ]), αi
i, β

i
i〉}

n
i=1 of T(Π), with

the abstraction mappingsαf
i, α

i
i and the action associations

βf
i , β

i
i being established along the above steps (1-3). The

additive abstractions of such an ABS-ensembleAE are
of interest because (i) they can provide quite informative
heuristic estimates, and (ii) each abstract problem in
Π = {Π[V f

i ], Π[V i
i ]}n

i=1 can be solved in polynomial time by
special-purpose algorithms for the corresponding fragments
of SAS+ (Katz & Domshlak 2008b). However, here as well,
the choice of the actual abstraction with respect toAE is
important, and optimizing this choice is clearly of interest.
Interestingly, LP-optimization can come to the rescue here
as well, and this despite the TG-structures ofAE not being
searchable explicitly in polynomial time.

Theorem 6 For any SAS+ planning task Π over n
variables, the fork-decomposition ABS-ensembleAE =

{〈T(Π[V f
i ]), αf

i, β
f
i〉, 〈T(Π[V i

i ]), αi
i, β

i
i〉}

n
i=1 of T(Π) is LP-

optimizable, and thushAE(s) is poly-time computable for
every states ∈ S.

Our LP-encoding of a fork-decompositionABS-ensemble
AE corresponds to LP reformulations of the algorithms of
Katz and Domshlak (2008b) for fork and inverted-fork prob-
lems with properly bounded root domains. Below we de-



scribe such an LP-encoding for an ABS-ensemble consist-
ing of a single fork-structured abstraction with a binary root
domain.

Given aSAS+ planning taskΠ = 〈V , A, I , G, cost〉, let
AE = {〈T(Πf

r), α
f , βf〉} be a fork-decomposition ofT(Π)

over a single fork rooted inr ∈ V . Considering that ab-
stract problem, let us denote its variables byV ′, its actions
by A′, and its goal stateG[V ′] by G′. We can assume that
G[v] is defined for allv ∈ V ′ \ {r}; all the goal-less leafs
can be simply omitted from the fork. For coherence with the
notation of Katz and Domshlak (2008b) we denote the (ab-
stracted to binary-valued) domain ofr by dom(r) = {0, 1}
such thats[r] = 0. Let σ(r) be a0/1 sequence of length
1+maxv∈V ′ |dom(v)|, and, for1 ≤ i ≤ |σ(r)|, σ(r)[i] = 0
if i is odd, and= 1, if i is even. Let�∗[σ(r)] be the set of all
non-empty prefixes ofσ(r) if G[r] is unspecified, and other-
wise, be the set of all prefixes ofσ(r) ending withG[r].

First, let the label-cost variables−→w contain a variablewa′

for every abstract actiona′ ∈ A′; the additivity constraints
Cadd(−→w ) are defined in terms of these label-cost variables
via βf as in Eq. 4. Now, given a states of Π, we specify
the LP-encodingL(s) = 〈−→x , f(−→x ), CAE(−→xw)〉 of AE with
respect tos as follows. The variable set−→x of L(s) consists
of three types of variables, notably

−→x = {hf} ∪
⋃

v∈V ′\{r},

ϑ∈dom(v),
1≤i≤|σ(r)|

{d(v, ϑ, i)} ∪
⋃

v∈V ′\{r},

ϑ,ϑ′∈dom(v),
ϑr∈{0,1}

{p(v, ϑ, ϑ′, ϑr)}.

The variablehf stands for the minimal cost of solving our
fork-structured problem, and the objective function ofL(s)
is simply f(−→x ) = hf . Each variabled(v, ϑ, i) stands for
the cost of the cheapest sequence of actions affectingv
that changes its value froms[v] to ϑ given that the value
changes ofr induce a0/1 sequence of lengthi. Each vari-
ablep(v, ϑ, ϑ′, ϑr) stands for the cost of the cheapest se-
quence of actions affectingv that changes its value fromϑ
to ϑ′ havingfixedthe value ofr to ϑr. The constraintCAE

of L(s) consists of the following sets of linear constraints.

(i) For all goal-achieving sequencesσ ∈ �∗[σ(r)] of
value changes ofr, and each pair ofr-changing actions
a, a′ ∈ A′ such thateff(a)[r] = 1 andeff(a′)[r] = 0,

hf ≤
∑

v∈V ′\{r}

d(v, G[v], |σ|)+⌈
|σ| − 1

2
⌉·wa+⌊

|σ| − 1

2
⌋·wa′

Semantics: The cost of solving the problem is not
greater than the sum of achieving the goal values for
all the leafs given a value sequence of the root, plus
the cost of providing that value sequence.

(ii) For each leafv ∈ V ′ \ {r},

d(v, s[v], 0) = 0

and, for eachϑ, ϑ′ ∈ dom(v), and1 ≤ i ≤ |σ(r)|,

d(v, ϑ′, i) ≤ d(v, ϑ, i − 1) + p(v, ϑ, ϑ′, σ(r)[i])

Semantics: The cost of achievingϑ′ from s[v] given
|σ(r)| = i is bounded by the cost of achievingϑ given
|σ(r)| = i − 1, and achievingϑ′ from ϑ givenσ(r)[i].

(iii) For eachv ∈ V ′ \ {r}, ϑ ∈ dom(v),

p(v, ϑ, ϑ, 0) = 0, p(v, ϑ, ϑ, 1) = 0

Likewise, for eachv-changing actiona ∈ A′, if
pre(a)[r] is unspecified, then, forϑr ∈ {0, 1},

p(v, ϑ, eff(a)[v], ϑr) ≤ p(v, ϑ, pre(a)[v], ϑr) + wa

and otherwise,

p(v, ϑ, eff(a)[v], pre(a)[r])

≤ p(v, ϑ, pre(a)[v], pre(a)[r]) + wa

Semantics: Shortest-path constraints as in Eq. 6.

This finalizes our LP-encoding for an ABS-ensemble con-
sisting of a single fork-structured abstraction with a binary
root domain. Due to the lack of space, here we omit the de-
tails of the LP reformulation of the algorithm for inverted
forks—while that algorithm differs from this for forks, the
general spirit of the corresponding LP-encoding is quite sim-
ilar. Finally, extending these encodings to ABS-ensembles
containing multiple such forks and inverted forks (and pos-
sibly some other LP-optimizable abstractions) is guaranteed
by the “composition” Theorem 4.

Structural Patterns and Tree-structured COPs
Fork-decomposition structural patterns are grounded in two
specific fragments of tractable cost-optimal planning. In
principle, it is possible that structural patterns based on
some other such fragments also lead to LP-optimizable
ABS-ensembles. Here we consider two such fragments that
have been recently characterized by Katz and Domshlak
(2008a). Both these fragments correspond to problems over
binary-valued state variables and actions inducing a poly-
tree3 causal graph. In the first fragment,Pb, all the causal
graph’s nodes haveO(1)-bounded in-degree. In the second
fragment,P(1), all actions are1-dependent.

While the poly-time solution schemes provided by Katz
and Domshlak forPb andP(1) substantially differ one from
another, they both correspond toreductions of the planning
problems to compact and tree-structured constraint opti-
mization problems (COPs). This joint property ofPb and
P(1) (that might also hold for some other problem frag-
ments as well) turns out to be very helpful to our objective of
joining Pb- andP(1)-based structural patterns to the “hAE-
friendly” family of LP-optimizable ABS-ensembles.

Let us start by considering a general, tree-structured con-
straint optimization problemCOP = (X ,F) over finite-
domain variablesX , functional componentsF , and the ob-
jectivemin

∑

ϕ∈F ϕ(X ). Fixing an arbitrary rooting of the
COP’s constraint network atr ∈ X , in what follows we re-
fer to that rooted tree ofCOP via its set ofdirectededges
E = {(x, x′)}. In these terms, we haveF = {ϕx :
dom(y) × dom(x) → R

0+ | (y, x) ∈ E}.
It is well-known that tree-structured COPs as above can be

solved in low polynomial time by a dynamic-programming-
style, message-passing algorithm (Dechter 2003). The bad
news is that (similarly to what we had with the Dijkstra

3Polytree is a DAG with an acyclic induced undirected graph.



algorithm for solving PDBs) we cannot use this message-
passing algorithm for our needs. The good news, how-
ever, is that such tree-structured COPs can also be solved
via linear programming. Specifically, given such a problem
COP = (X ,F), let

−→c = {hcop} ∪
⋃

(x′,x)∈E,

x′∈dom(x′)

{c(x|x′)}

be a set of non-negative, real-valued variables, with the se-
mantics of eachc(x|x′) being “optimal solution for the sub-
tree rooted atx givenx′ = x′”. Then, the solution of LP

max
−→c

hcop

s.t.∀r ∈ dom(r) : hcop ≤
∑

(r,x)∈E

c(x|r),

∀(x, y) ∈ E, x ∈ dom(x), y ∈ dom(y) :

c(y|x) ≤
∑

(y,z)∈E

c(z|y) + ϕy(x, y).

(7)

induces a solution forCOP.

Lemma 1 Given a tree-structured constraint optimization
problemCOP = (X ,F) over finite-domain variablesX and
functional componentsF , we have

min
x∈dom(X )

∑

ϕ∈F

ϕ(x) = max
c∈H COP

hcop

whereH COP is the convex polyhedron specified by the lin-
ear constraints as in Eq. 7.

With Lemma 1 in hand, we now make two additional steps
towards an LP-encoding of ABS-ensemblesAE containing
structural patterns reducible to tree-structured COPs. In
each suchindividualstructural pattern, each valueϕy(x, y)
of each functional componentϕy is somehow pre-computed
from the costs of the actions. In our case, however, the
costs of the actions in the abstract problems are not fixed
in advanced, but should be determined by the process of LP-
optimization. This is where our next steps come into the
picture.

Consider a single COP-reducible cost-optimal planning
problem. First,supposethat, for anyfixedaction-costs vec-
tor w†, each functional-component valueϕ ≡ ϕy(x, y) cor-
responds to a solution value of some compact (canonical
form) linear program

max fϕ(−−→zϕw)

s.t.Aϕ · −−→zϕw ≤ bϕ

−→w ≤ w
†

(8)

whereAϕ andbϕ are a matrix and a vector of coefficients,
respectively. If so, then, givenw†, we can reformulate
the linear program in Eq. 7 by (i) replacing theconstants
ϕy(x, y) by the corresponding affine functionsfϕ(−→z

ϕ
∪−→w ),

and (ii) for eachϕ, adding its linear constraints as in Eq. 8.
The extended program is still linear, and we still have

min
x∈dom(X )

∑

ϕ∈F

ϕ(x) = max
czw∈H COP

hcop

wherez andw are assignments to−→z =
⋃

ϕ
−→z

ϕ
and action-

cost variables−→w , respectively, andH COP is the convex
polyhedron specified by theseextendedlinear constraints.

Now, given a SAS+ planning task Π, let AE =
{〈T(Π′), α, β〉} be a single-abstraction ABS-ensemble of
T(Π) such that cost-optimal planning forΠ′ is reducible
to a tree-structured constraint optimization problemCOPΠ′

satisfying Eq. 8. The extended linear program specified
above provides the basis for the LP-encoding of such ABS-
ensembles. First, as before, let the label-cost variables
−→w contain a variablewa′ for every abstract actiona′ ∈
A′; the additivity constraintsCadd(−→w ) are defined in terms
of these label-cost variables viaβ as in Eq. 4. Now,
given a states of Π, we specify an LP-encodingL(s) =
〈−→x , f(−→x ), CAE(−→xw)〉 of AE with respect tos as follows.

• The variable set−→x = −→cz consists of the variables of
Eqs. 7 and 8, and the objective ofL(s) is f(−→x ) = hcop.

• The constraintCAE(−→xw) of L(s) consists of all the lin-
ear constraints from Eq. 7, as well as the constraint
Aϕ · −−→zϕw ≤ bϕ from Eq. 8 for all functional-component
valuesϕ of COPΠ′ .

This finalizes the desired LP-encoding; extending it
to such multiple-abstraction ABS-ensemblesAE =
{〈T(Π′

i), αi, βi〉}
k
i=1 (and, again, possibly some other LP-

optimizable abstractions) is, again, guaranteed by the “com-
position” Theorem 4.

Theorem 7 Given aSAS+ planning taskΠ, and an ABS-
ensembleAE = {〈T(Π′

i), αi, βi〉}
k
i=1 of T(Π), if k =

O(poly(|Π|)), and cost-optimal planning for eachΠ′
i is

poly-time reducible to a compact and tree-structured con-
straint optimization problem satisfying Eq. 8, thenAE is
LP-optimizable, and thushAE(s) is poly-time computable
for every states ∈ S.

The last but not least is, of course, the question of whether
the requirement posed by Eq. 8 is any realistic with respect
to the COPs induced by the abstract planning problems. For-
tunately, Theorem 8 closes the story with some very good
news on that matter.

Theorem 8 Cost-optimal planning for any taskΠ in Pb ∪
P(1) is poly-time reducible to a compact and tree-structured
constraint optimization problem satisfying Eq. 8.

Discussion
Numerous recent works have suggested that additive ensem-
bles of admissible heuristics is a powerful tool for heuristic-
search systems. However, the action-cost partitioning pa-
rameter of such ensembles kept the “how to add (if at all)”
question totally open. Here we described a procedure that
closes this question for arbitrary ensembles of all known to



us abstraction-based heuristics such as PDBs, constrained
PDBs, merge-and-shrink abstractions, fork-decomposition
structural patterns, and structural patterns based on tractable
constraint optimization. The procedure is based on a
linear-programming formulation of the optimization prob-
lem: given a classical planning task, a forward-search state,
and a set of abstraction-based admissible heuristics, con-
struct an optimal additive composition of these heuristics
with respect to the given state. Most importantly, the time
complexity of our procedure is polynomial for arbitrary en-
sembles of all the above abstraction-based heuristics. We
now outline some of the (in our opinion) more important
challenges for future work.

Structure optimization. Probably the most important is-
sue that remains almost entirely open is this of “structure
optimization”. While our framework optimizes the compo-
sition of agivenset of TG-structures, ultimately we would
like to move to even more parametric such ensembles, allow-
ing flexibility in the actual choice of TG-structures. For in-
stance, it would clearly help to know what PDBs should (op-
timally) be added to the ensemble, what domain abstractions
should (optimally) be performed on the roots of the inverted
forks and forks, what polytrees should (optimally) span the
causal graph of the problem, etc. Note that the first step in
this direction has already been made between the lines of
this paper—an immediate corollary of Theorem 5 is that, for
any forward-search states, and anyfixed upper bound on the
size of the PDBs, one can construct in polynomial time the
actualoptimal (fors) pattern-database ABS-ensemble, and
this simply by running LP-optimization over the ensemble
of all possible such PDBs.

Additive m-reachability. As we mentioned, the sem-
inal m-reachability heuristicshm are not covered by our
framework. While computing a singlehm heuristic for a
fixedm is poly-time,hm is not based on a problem abstrac-
tion (even in the very permissive sense of Definition 1)—
the state-graph over whichhm is computed is an AND/OR-
graph (and not an OR-graph such as transition graphs), each
original problem state is mapped to asetof abstract states
(and not to a concrete such state), and the actual computa-
tion of hm corresponds to computing a critical tree (and not
a shortest path) to the goal. Tangentially, the problem of
computing a critical-tree in an AND/OR-graph does not ap-
pear to have an LP reformulation. Hence, the complexity of
computing optimal additivehm heuristics is still open and
very much interesting.

LP-encodings for “double relaxations”. The basic
idea of LP-optimizing heuristic composition naturally ex-
tends also tointractable planning relaxations that admit
“second-order” LP-relaxations. For instance, some in-
tractable planning relaxations formalizable via sounds and
complete integer-valued LPs (such as the deletes-ignoring
relaxation underlyingh+, or more recent action-ordering re-
laxation of van den Briel (2007)) appear to be quite natural
such candidates. Things, however, are more complicated
than that because, very roughly, (i) Definition 4 requires a
very specific type of LP-encodings (satisfying Eq. 5), and
(ii) none of the known to us ILP-to-LP “second-order” re-
laxations appear to be of that type. Hence, developing “Eq. 5

friendly” LP-relaxations forh+, action-ordering relaxation,
and other informative yet intractable planning relaxations is
now definitely of interest.

Finally, we would like to address an almost immediate
source of skepticism with respect to the practicality of our
optimization procedure—using it requires solving a large LP
at every search node, while typically such per-node compu-
tations are expected to be oflow polynomial time. We be-
lieve, however, that the superior informativeness of the op-
timal additive heuristics has a clear potential to eventually
overweight the cost of heuristic computation due to substan-
tial reductions in the number of expanded search nodes. In
other words, while the informal notion of “low polynomial
time” changes with the progress of hardware technology, it
is widely believed these days thatP 6= NP, and thus reduc-
ing the amount of expanded nodes is still the most important
objective of the heuristic-search research in the long run.
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