
Structural Patterns Heuristics via Fork Decomposition

Michael Katz and Carmel Domshlak∗

Faculty of Industrial Engineering & Management
Technion, Israel

Abstract

We consider a generalization of the PDB homomorphism ab-
stractions to what is called “structural patterns”. The ba-
sic idea is in abstracting the problem in hand into provably
tractable fragments of optimal planning, alleviating by that
the constraint of PDBs to use projections of only low di-
mensionality. We introduce a general framework for additive
structural patterns based on decomposing the problem along
its causal graph, suggest a concrete non-parametric instance
of this framework called fork-decomposition, and formally
show that the admissible heuristics induced by the latter ab-
stractions provide state-of-the-art worst-case informativeness
guarantees on several standard domains.

Introduction
The difference between various algorithms for optimal plan-
ning as heuristic search is mainly in the admissible heuris-
tic functions they define and use. Very often an admissi-
ble heuristic function for domain-independent planning is
defined as the optimal cost of achieving the goals in an
over-approximating abstraction of the planning problem in
hand (Pearl 1984; Bonet & Geffner 2001). Such an abstrac-
tion is obtained by relaxing certain constraints present in the
specification of the problem, and the desire is to obtain a
tractable (that is, solvable in polynomial time), yet infor-
mative abstract problem. The main question here is thus:
What constraints should we relax to obtain such an effective
over-approximating abstraction?

The abstract state space induced by a homomorphism ab-
straction is obtained by a systematic contracting groups of
original problem states into abstract states. Most typically,
such state-gluing is obtained by projecting the original prob-
lem onto a subset of its parameters, eliminating the con-
straints that fall outside the projection. Homomorphisms
have been successfully explored in the scope of domain-
independent pattern database (PDB) heuristics (Edelkamp
2001; Haslum et al. 2007), inspired by the (similarly named)
problem-specific heuristics for search problems such as
(k2 − 1)-puzzles, Rubik’s Cube, etc. (Culberson & Scha-
effer 1998). A core property of the PDB heuristics is that

∗The work of both authors is partly supported by Israel Science
Foundation and C. Wellner Research Fund.
Copyright c© 2008, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

the problem is projected onto a space of a small (up to log-
arithmic) dimensionality so that reachability analysis in that
space could be done by exhaustive search. This constraint
implies a scalability limitation of the PDB heuristics—as the
problems of interest grow, limiting patterns to logarithmic
dimensionality might make them less and less informative
with respect to the original problems.

In this paper we consider a generalization of the PDB ab-
stractions to what is called structural patterns. As it was
recently suggested by Katz and Domshlak (2007), the basic
idea behind structural patterns is simple and intuitive, and it
corresponds to abstracting the original problem to provably
tractable fragments of optimal planning. The key point is
that, at least theoretically, moving to structural patterns al-
leviates the requirement for the abstractions to be of a low
dimensionality. The contribution of this paper is precisely in
showing that structural patterns are far from being of theo-
retical interest only. Specifically, we

• Specify causal-graph structural patterns (CGSPs), a gen-
eral framework for additive structural patterns that is
based on decomposing the problem in hand along its
causal graph.

• Introduce a concrete family of CGSPs, called fork de-
compositions, that is based on two novel fragments of
tractable cost-optimal planning.

• Following the type of analysis suggested by Helmert and
Mattmüller (2008), study the asymptotic performance ra-
tio of the fork-decomposition admissible heuristics, and
show that their worst-case informativeness on selected do-
mains more than favorably competes with this of (even
parametric) state-of-the-art admissible heuristics.

From PDBs to Structural Patterns
Problems of classical planning correspond to reachability
analysis in state models with deterministic actions and com-
plete information; here we consider state models captured
by the SAS+ formalism (Bäckström & Nebel 1995).

Definition 1 A SAS+ problem instance is given by a
quadruple Π = 〈V,A, I,G〉, where:

• V = {v1, . . . , vn} is a set of state variables, each associ-
ated with a finite domain dom(vi). The initial state I is a

A

C

D

B

E

F

G

t

c2

c1
c3

p1

p2

Figure 1: Logistics-style example adapted from Helmert
(2006a). Deliver p1 from C to G, and p2 from F to E using
the cars c1, c2, c3 and truck t, and making sure that c3 ends
up at F . The cars may only use city roads (thin edges), the
truck may only use the highway (thick edge).

complete assignment, and the goal G is a partial assign-
ment to V .

• A is a finite set of actions, where each action a is a pair
〈pre(a), eff(a)〉 of partial assignments to V called pre-
conditions and effects, respectively. Each action a ∈ A is
associated with a non-negative real-valued cost C(a).

An action a is applicable in a state s ∈ dom(V) iff
s[v] = pre(a)[v] whenever pre(a)[v] is specified. Applying
a changes the value of v to eff(a)[v] if eff(a)[v] is speci-
fied. In this work we focus on cost-optimal (also known as
sequentially optimal) planning in which the task is to find a
plan ρ ∈ A∗ for Π minimizing

∑
a∈ρ C(a).

Across the paper we use a slight variation of a Logistics-
style example of Helmert (2006a). This example is depicted
in Figure 1, and in SAS+ it has

V = {p1, p2, c1, c2, c3, t}
dom(p1) = dom(p2) = {A, B, C, D, E, F, G, c1, c2, c3, t}
dom(c1) = dom(c2) = {A, B, C, D}
dom(c3) = {E, F, G}
dom(t) = {D, E}

I = {p1 =C, p2 =F, t=E, c1 =A, c2 =B, c3 =G}
G = {p1 =G, p2 =E, c3 =F},

and actions corresponding to all possible loads and unloads,
as well as single-segment movements of the vehicles. For
instance, if action a captures loading p1 into c1 at C, then
pre(a) = {p1 =C, c1 =C}, and eff(a) = {p1 =c1}.

Pattern Database Heuristics
Given a problem Π = 〈V,A, I,G〉, for any partial as-
signment x to V , and any V ′ ⊆ V , by x[V ′] we refer
to the projection of x onto V ′. Considering homomor-
phism abstractions of Π, each variable subset V ′ ⊆ V de-
fines an over-approximating pattern abstraction Π[V ′] =
〈V ′, A[V ′], I [V ′], G[V ′]〉 that is obtained by projecting the
initial state, the goal, and all the actions’ preconditions and
effects onto V ′ (Edelkamp 2001). The idea behind the
PDB heuristics is elegantly simple. First, we select a (rel-
atively small) set of subsets V1, . . . , Vm of V such that, for
1 ≤ i ≤ m, the size of Vi is sufficiently small to perform
exhaustive-search reachability analysis in Π[Vi]. Let h[Vi](s)
be the optimal cost of achieving the abstract goal G[Vi]

from the abstract state s[Vi]. Since each Π[Vi] is an over-
approximating abstraction of Π, each h[Vi](·) is an admissi-
ble estimate of the true cost h∗(·). Given that, if the set of
abstract problems Π[V1], . . . ,Π[Vm] satisfy certain require-
ments of additivity (Felner, Korf, & Hanan 2004; Edelkamp
2001), then PDB heuristic can be set to

∑m
i=1 h[Vi](s), and

otherwise only to maxm
i=1 h[Vi](s).

We now provide a syntactically slight, yet quite powerful
generalization of the standard mechanism for constructing
additive decompositions of planning problems along sub-
sets of their state variables (Felner, Korf, & Hanan 2004;
Edelkamp 2001).

Definition 2 Let Π = 〈V,A, I,G〉 be a SAS+ problem, and
let V = {V1, . . . , Vm} be a set of some subsets of V . An
additive decomposition of Π over V is a set of SAS+ prob-
lems Π = {Π1, . . . ,Πm}, such that
(1) For each Πi = 〈Vi, Ai, Ii, Gi〉, we have

(a) Ii = I [Vi], Gi = G[Vi], and

(b) if a[Vi] def= 〈pre(a)[Vi], eff(a)[Vi]〉, then

Ai = {a[Vi] | a ∈ A ∧ eff(a)[Vi] 6= ∅}.

(2) For each a ∈ A holds

C(a) ≥
m∑

i=1

Ci(a[Vi]). (1)

Definition 2 generalizes the idea of “all-or-nothing”
action-cost partition from the literature on additive PDBs to
arbitrary action-cost partitions—the original cost of each ac-
tion is partitioned this or another way among the “represen-
tatives” of that action in the abstract problems, with Eq. 1
being the only constraint posed on this action-cost partition.

Proposition 1 For any SAS+ problem Π over variables
V , any set of V ’s subsets V = {V1, . . . , Vm}, and any
additive decomposition of Π over V , we have h∗(s) ≥∑m

i=1 h∗i (s
[Vi]) for all states s of Π.1

Structural Patterns: Basic Idea
PDB heuristics and their enhancements are successfully ex-
ploited these days in the planning research (Edelkamp 2001;
Haslum, Bonet, & Geffner 2005; Haslum et al. 2007).
However, the well-known Achilles heel of the PDB heuris-
tics is that each pattern (that is, each selected variable sub-
set Vi) is required to be small so that reachability analy-
sis in Π[Vi] could be done by exhaustive search. In short,
computing h[Vi](s) in polynomial time requires satisfying
|Vi| = O(log |V |) if |dom(v)| = O(1) for each v ∈ Vi,
and satisfying |Vi| = O(1), otherwise. In both cases, this
constraint implies an inherent scalability limitation of the
PDB heuristics. As the problems of interest grow, limit-
ing patterns to logarithmic dimensionality will unavoidably
make them less and less informative with respect to the orig-
inal problems, and this unless the domain forces its problem

1Due to the lack of space, the proofs are given in the full TR.

c₁ c₂ c₃ t

p₁ p₂

A

C

D

B

E

F

G

D E
at A at B at C at D at E at F at G

in c₂

in c₁ in t

in c₃

(a) (b) (c)

Figure 2: (a) Causal graph; (b) DTGs (labels omitted) of c1 and c2 (left), t (centre), and c3 (right); (c) DTG of p1 and p2.

instances to consist of small, loosely-coupled subproblems
that can be captured well by individual patterns (Helmert &
Mattmüller 2008).

However, as recently observed by Katz and Domshlak
(2007), pattern databases are not necessarily the only way
to proceed with homomorphism abstractions. In principle,
given a SAS+ problem Π = 〈V,A, I,G〉, one can select a
set of subsets V1, . . . , Vm of V such that, for 1 ≤ i ≤ m,
the reachability analysis in Π[Vi] is tractable (not neces-
sarily due to the size of but) due to the specific structure
of Π[Vi]. What is important here is that this requirement
can be satisfied even if the size of each selected pattern
Vi is Θ(|V |). In any event, having specified the abstract
problems Π[V1], . . . ,Π[Vm] as above, the heuristic estimate
is then formulated similarly to the PDB heuristics: If the
set of abstract problems Π[V1], . . . ,Π[Vm] satisfy additiv-
ity, then we set h(s) =

∑m
i=1 h[Vi](s), otherwise we set

h(s) = maxm
i=1 h[Vi](s).

A priori, this generalization of the PDB idea to struc-
tural patterns is appealing as it allows using patterns of
unlimited dimensionality. The pitfall, however, is that
such structural patterns correspond to tractable fragments
of cost-optimal planning, and the palette of such known
fragments is extremely limited (Bäckström & Nebel 1995;
Bylander 1994; Jonsson & Bäckström 1998; Jonsson 2007;
Katz & Domshlak 2007). Next, however, we show that this
palette can still be extended, and this in the direction allow-
ing us to materialize the idea of structural patterns heuristics.

Causal Graph Structural Patterns
The key role in what follows plays the causal graph struc-
ture that has already been exploited in complexity analysis
of classical planning. The causal graph CG(Π) = (V,E)
of a SAS+ problem Π = 〈V,A, I,G〉 is a digraph over the
nodes V . An arc (v, v′) belongs to CG(Π) iff v 6= v′ and
there exists an action a ∈ A such that eff(a)[v′], and ei-
ther pre(a)[v] or eff(a)[v] are specified. In what follows, for
each v ∈ V , by pred(v) and succ(v) we refer to the sets of
all immediate predecessors and successors of v in CG(Π).

Though less heavily, we also use here the structure of
the problem’s domain transition graphs (Bäckström & Nebel
1995). The domain transition graph DTG(v,Π) of v in Π
is an arc-labeled digraph over the nodes dom(v) such that
an arc (ϑ, ϑ′) belongs to DTG(v,Π) iff there is an action
a ∈ A with eff(a)[v] = ϑ′, and either pre(a)[v] is un-
specified or pre(a)[v] = ϑ. In that case, the arc (ϑ, ϑ′) is
labeled with pre(a)[V \{v}] and C(a). Figure 2 depicts the

causal and (labels omitted) domain transition graphs for our
running-example problem Π. We now proceed with exploit-
ing this structure of the problems in devising structural pat-
tern heuristics.

Though additive decomposition over subsets of variables
is rather powerful, it is too general for our purposes because
it does not account for any structural requirements one may
have for the abstract problems. For instance, focusing on the
causal graph, when we project the problem onto subsets of
its variables, we leave all the causal-graph connections be-
tween the variables in each abstract problem untouched. In
contrast, targeting tractable fragments of cost-optimal plan-
ning, here we aim at receiving abstract problems with causal
graphs of specific structure. This leads us to introducing
what we call causal graph structural patterns; the basic idea
here is to abstract the given problem Π along a subgraph of
its causal graph, obtaining an over-approximating abstrac-
tion that preserves the effects of the Π’s actions to the largest
extent possible.

Definition 3 Let Π = 〈V,A, I,G〉 be a SAS+ problem,
and G = (VG , EG) be a subgraph of the causal graph
CG(Π). A causal-graph structural pattern (CGSP) ΠG =
〈VG , AG , IG , GG〉 is a SAS+ problem defined as follows.

1. IG = I [VG], GG = G[VG],
2. AG =

⋃
a∈A AG(a), where each AG(a) =

{a1, . . . , al(a)}, l(a) ≤ |eff(a)|, is a set of actions
over VG such that
(a) for each ai ∈ AG(a), if eff(ai)[v′], and either

eff(ai)[v] or pre(ai)[v] are specified, then (v, v′) ∈
EG .

(b) for each (v, v′) ∈ EG , s.t. eff(a)[v′] is specified and
either eff(a)[v] or pre(a)[v] is specified, and each
ai ∈ AG(a), if eff(ai)[v′] is specified, then either
eff(ai)[v] or pre(ai)[v] is specified as well.

(c) for each s ∈ dom(VG), if pre(a)[VG] ⊆ s, then the
action sequence ρ = a1 · a2 · . . . · al(a) is applicable
in s, and if applying ρ in s results in s′ ∈ dom(VG),
then s′ \ s = eff(a)[VG].

(d) C(a) ≥
∑l(a)

i=1 CG(ai).

For any SAS+ problem Π = 〈V,A, I,G〉, and any sub-
graph G = (VG , EG) of the causal graph CG(Π), a CGSP
ΠG can always be (efficiently) constructed from Π, and it is
ensured that CG(ΠG) = G. The latter is directly enforced
by the construction constraints in Definition 3. To see the

former, one possible construction of the action sets AG(a) is
as follows—if {v1, . . . , vk} is the subset of VG affected by
a, then AG(a) = {a1, . . . , ak} with

eff(ai)[v] =

(
eff(a)[v], v = vi

unspecified, otherwise

pre(ai)[v] =

8>>>>><>>>>>:

eff(a)[v], v = vj ∧ j < i ∧ (vj , vi) ∈ EG

pre(a)[v], v = vj ∧ j > i ∧ (vj , vi) ∈ EG

pre(a)[v], v = vi

pre(a)[v], v 6∈ {v1, . . . , vk} ∧ (v, vi) ∈ EG

unspecified, otherwise

Now, given a SAS+ problem Π and a subgraph G of
CG(Π), if the structural pattern ΠG can be solved cost-
optimally in polynomial time, we can use its solution as
an admissible heuristic for Π. Moreover, given a set G =
{G1, . . . ,Gm} of subgraphs of the causal graph CG(Π),
these heuristic estimates induced by the structural patterns
{ΠG1 , . . . ,ΠGm} are additive if holds a certain property
given by Definition 4.

Definition 4 Let Π = 〈V,A, I,G〉 be a SAS+ problem, and
G = {G1, . . . ,Gm} be a set of subgraphs of the causal
graph CG(Π). An additive CGSP decomposition of Π
over G is a set of CGSPs Π = {ΠG1 , . . . ,ΠGm

} such that,
for each action a ∈ A, holds

C(a) ≥
m∑

i=1

∑
a′∈AGi

(a)

CGi
(a′). (2)

Proposition 2 (Admissibility) For any SAS+ problem Π,
any set of CG(Π)’s subgraphs G = {G1, . . . ,Gm}, and
any additive CGSP decomposition of Π over G, we have
h∗(s) ≥

∑m
i=1 h∗i (s

[VGi
]) for all states s of Π.

Relying on Proposition 2, we can now decompose any
given problem Π into a set of tractable CGSPs Π =
{ΠG1 , . . . ,ΠGm

}, solve all these CGSPs in polynomial time,
and derive an admissible heuristic for Π. Note that (similarly
to Definition 2) Definition 4 leaves the decision about the ac-
tual partition of the action costs rather open. In what follows
we adopt the most straightforward, uniform action-cost par-
titioning in which the cost of each action a is equally split
among all the non-redundant abstractions of a in Π. The
choice of the action-cost partitioning, however, can some-
times be improved or even optimized; for further details
see (Katz & Domshlak 2008).

Fork-Decompositions
We now introduce certain concrete additive decompositions
of SAS+ planning problems along their causal graphs. In it-
self, these decompositions do not immediately lead to struc-
tural patterns abstractions, yet they provide an important
building block on our way towards them.

Definition 5 Let Π = 〈V,A, I,G〉 be a SAS+ problem.

c₁

p₁ p₂

c₁ c₂ c₃ t

p₁

CG(Πf
c1

) CG(Πif
p1

)

Figure 3: Causal graphs of a fork and an inverted fork struc-
tural patterns of the running example.

– F-decomposition ΠF = {Πf
v}v∈V ,

– I-decomposition ΠI = {Πi
v}v∈V , and

– FI-decomposition ΠFI = {Πf
v,Πi

v}v∈V

are additive CGSP decompositions of Π over sets of sub-
graphs GF = {Gf

v}v∈V , GI = {G i
v}v∈V , and GFI =

GF ∪GI, respectively, where, for v ∈ V ,

VGf
v

= {v} ∪ succ(v), EGf
v

=
⋃

u∈succ(v)

{(v, u)}

VG i
v

= {v} ∪ pred(v), EG i
v

=
⋃

u∈pred(v)

{(u, v)}

Note that all three fork-decompositions in Definition 5 are
entirely non-parametric in the sense of flexibility left by the
general definition of CGSPs. Illustrating Definition 5, let
us consider the (uniform) FI-decomposition of the problem
Π from our running example, assuming all the actions in
Π have the same unit cost. After eliminating from GFI all
the singletons2, we get GFI = {Gf

c1
,Gf

c2
,Gf

c3
,Gf

t ,G i
p1

,G i
p2
}.

Considering the action sets of the problems in ΠFI, each
original driving action is present in some three problems in
ΠFI, while each load/unload action is present in some five
such problems. For instance, the action “drive-c1-from-A-
to-D” is present in {Πf

c1
,Πi

p1
,Πi

p2
}, and the action “load-p1-

into-c1-at-A” is present in {Πf
c1

,Πf
c2

,Πf
c3

,Πf
t,Π

i
p1
}. Since

we assume a uniform partitioning of the action costs, the cost
of each driving and load/unload action in each correspond-
ing abstract problem is set to 1/3 and 1/5, respectively.

From Proposition 2 we have the sum of costs of solving
the problems ΠFI,

hFI =
∑
v∈V

(
h∗Πf

v
+ h∗Πi

v

)
, (3)

being an admissible estimate of h∗. The question now is
how good this estimate is. The optimal cost of solving our
problem is 19. Taking as a basis for comparison the seminal
(non-parametric) hmax and h2 heuristics (Bonet & Geffner
2001; Haslum & Geffner 2000), we have hmax = 8 and
h2 = 13. At the same time, we have hFI = 15, and hence it
appears that using hFI is at least promising.

Unfortunately, despite the seeming simplicity of the prob-
lems in Π, turns out that fork-decompositions as they are do
not fit the requirements of the structural patterns framework.
On the one hand, the causal graphs of {Πf

c1
,Πf

c2
,Πf

c3
,Πf

t}
and {Πi

p1
,Πi

p2
} form directed forks and inverted forks, re-

spectively (see Figure 3), and, in general, the number of
2If the causal graph CG(Π) is connected and n > 1, then this

elimination is not lossy, and can only improve the overall estimate.

variables in each such problem is Θ(n). On the other
hand, Domshlak and Dinitz (2001) show that even non-
optimal planning for SAS+ problems with fork and in-
verted fork causal graphs is NP-complete. Moreover, even
if the domain-transition graphs of all the state variables
are strongly connected, optimal planning for forks and in-
verted forks remain NP-hard (see Helmert (2003) and (2004)
for the respective results). In the next section, however,
we show that this is not the end of the story for fork-
decompositions.

Meeting CGSPs and Domain Abstractions
While hardness of optimal planning for problems with fork
and inverted fork causal graphs put a shadow on relevance
of fork-decompositions, closer look at the proofs of the cor-
responding hardness results of Domshlak and Dinitz (2001)
and Helmert (2003; 2004) reveals that these proofs in partic-
ular rely on root variables having large domains. It turns out
that this is not incidental, and Propositions 3 and 4 below
characterize some substantial islands of tractability within
these structural fragments of SAS+.

Proposition 3 (Tractable Forks) Given a SAS+ problem
Π = 〈V,A, I,G〉 with a fork causal graph rooted at r, if
(i) |dom(r)| = 2, or (ii) for all v ∈ V , |dom(v)| = O(1),
then cost-optimal planning for Π is poly-time.

For the next proposition we use the notion of k-dependent
actions—an action a is called k-dependent if it is precondi-
tioned by ≤ k variables that are not affected by a (Katz &
Domshlak 2007).

Proposition 4 (Tractable Inverted Forks) Given a SAS+

problem Π = 〈V,A, I,G〉 with an inverted fork causal
graph rooted at r ∈ V , if |dom(r)| = O(1) and all the
actions A are 1-dependent, then cost-optimal planning for
Π is poly-time.

Propositions 3 and 4 allow us to meet between the fork-
decompositions and structural patterns. The basic idea is to
further abstract each CGSP in fork-decomposition of Π by
abstracting domains of its variables to meet the requirements
of the tractable fragments. Such domain abstractions have
been suggested for domain-independent planning by Hoff-
mann et al. (2006), and recently successfully exploited in
planning as heuristic search by Helmert et al. (2007).

Definition 6 Let Π = 〈V,A, I,G〉 be a SAS+ problem,
v ∈ V be a variable of Π, and Φ = {φ1, . . . , φk} be a set
of mappings from dom(v) to some sets Γ1, . . . ,Γk. An ad-
ditive domain decomposition of Π over Φ is a set of SAS+

problems ΠΦ = {Π1, . . . ,Πk} such that

(1) For each Πi = 〈Vi, Ai, Ii, Gi〉, we have3

(a) Ii = φi(I), Gi = φi(G), and

3For a partial assignment S on V , φi(S) denotes the abstract
partial assignment obtained from S by replacing S[v] (if any) with
φi(S[v]).

(b) if φi(a) def= 〈φi(pre(a)), φi(eff(a))〉, then

Ai = {φi(a) | a ∈ A ∧ φi(eff(a)) 6⊆ φi(pre(a))}.

(2) For each a ∈ A holds

C(a) ≥
k∑

i=1

Ci (φi(a)). (4)

Proposition 5 For any SAS+ problem Π over variables V ,
any variable v ∈ V , any domain abstractions Φ = {φi}k

i=1
of v, and any additive domain decomposition of Π over Φ,
we have h∗(s) ≥

∑k
i=1 h∗i (φi(s)) for all states s of Π.

Targeting tractability of the causal graph structural pat-
terns, we now connect between fork-decompositions and
domain decompositions as in Definition 6. Given a FI-
decomposition ΠFI = {Πf

v,Πi
v}v∈V of Π, we

• For each Πf
v ∈ Π, associate the root r of CG(Πf

v) with
mappings Φv = {φv,1, . . . , φv,kv

}, kv = O(poly(|Π|)),
and all φv,i : dom(r) → {0, 1}, and then additively de-
compose Πf

v into Πf
v = {Πf

v,i}
kv
i=1 over Φv .

• For each Πi
v ∈ Π, first, reformulate it in terms of 1-

dependent actions only; such a reformulation can eas-
ily be done in time/space O(poly(|Πi

v|)). Then, as-
sociate the root r of CG(Πi

v) with mappings Φ′
v =

{φ′v,1, . . . , φ
′
v,k′v

}, k′v = O(poly(|Π|)), and all φ′v,i :
dom(r) → {0, 1, . . . , bv,i}, bv,i = O(1), and then ad-

ditively decompose Πi
v into Πi

v = {Πi
v,i}

k′v
i=1 over Φ′

v .
From Propositions 2 and 5 we then have

hFI =
∑
v∈V

 kv∑
i=1

h∗Πf
v,i

+
k′v∑
i=1

h∗Πi
v,i

, (5)

being an admissible estimate of h∗ for Π, and, from Propo-
sitions 3 and 4, hFI is also poly-time computable. The ques-
tion is, however, how further abstracting our fork decompo-
sitions using domain abstractions as above affects the infor-
mativeness of the heuristic estimate. Below we show that
the answer to this question can be somewhat surprising.

To illustrate a mixture of structural and domain abstrac-
tions as above, here as well we use our running Logistics-
style example. To begin with an extreme setting of domain
abstractions, first, let the domain abstractions for roots of
both forks and inverted forks be to binary domains. Among
multiple options for choosing the mapping sets {Φv} and
{Φ′

v}, here we use a simple choice of distinguishing be-
tween different values of each variable v on the basis of
their distance from I[v] in DTG(v,Π). Specifically, for each
v ∈ V , we set Φv = Φ′

v , and, for each value ϑ ∈ dom(v),

φv,i(ϑ) = φ′v,i(ϑ) =
{

0, d(I[v], ϑ) < i

1, otherwise
(6)

For example, the problem Πf
c1

is decomposed (see Fig-
ure 2b) into two problems, Πf

c1,1 and Πf
c1,2, with the bi-

nary abstract domains of c1 corresponding to the partitions

{A}/{B,C,D} and {A,D}/{B,C} of dom(c1), respec-
tively. Now, given the decomposition of Π over forks
and {Φv,Φ′

v}v∈V as above, consider the problem Πi
p1,1, ob-

tained from abstracting Π along the inverted fork of p1 and
then abstracting dom(p1) using

φp1,1(ϑ) =

(
0, ϑ ∈ {C}
1, ϑ ∈ {A, B, D, E, F, G, c1, c2, c3, t}

It is not hard to verify that, from the original actions affect-
ing p1, we are left in Πi

p1,1 only with actions conditioned by
c1 and c2. If so, then no information is lost4 if we

1. remove from Πi
p1,1 both variables c3 and t, and the actions

changing (only) these variables, and
2. redistribute the (fractioned) cost of the removed actions

between all other representatives of their originals in Π.
The latter revision of the action cost partitioning can be ob-
tained directly by replacing the cost-partitioning steps corre-
sponding to Eqs. 2 and 4 by a single, joint action cost parti-
tioning applied over the final abstractions

⋃
v∈V (Πf

v ∪Πi
v)

and satisfying

C(a) ≥
X
v∈V

0B@ kvX
i=1

X
a′∈AGf

v
(a)

Cf
v,i(φv,i(a

′)) +

k′vX
i=1

X
a′∈AGi

v
(a)

C i
v,i(φ

′
v,i(a

′))

1CA
(7)

Overall, computing hFI as in Eq. 5 under “all binary-
range domain abstractions” provides us with hFI = 12 7

15 ,
and knowing that the original costs are all integers we can
safely adjust it to hFI = 13. Hence, even under the most
severe domain abstractions as above, hFI does not fall from
h2 in our example problem.

Let us now slightly relax our domain abstractions for the
roots of the inverted forks to be to the ternary range {0, 1, 2}.
While mappings {Φv} stay as before, {Φ′

v} are set to

∀ϑ ∈ dom(v) : φ′v,i =

8><>:
0, d(I[v], ϑ) < 2i− 1

1, d(I[v], ϑ) = 2i− 1

2, d(I[v], ϑ) > 2i− 1

(8)

For example, the problem Πi
p1

is now decomposed into
Πi

p1,1, . . . ,Π
i
p1,3 along the abstractions of dom(p1). Ap-

plying now the same computation of hFI as in Eq. 5 over
the new set of domain abstractions gives hFI = 15 1

2 , which,
again, can be safely adjusted to hFI = 16. Note that this
value is higher than hFI = 15 obtained using the (gener-
ally intractable) “pure” fork-decomposition as in Eq. 3. At
first view, this outcome may seem counterintuitive as the do-
main abstractions are applied over the fork-decomposition,
and one would expect a stronger abstraction to provide less
precise estimates. This, however, is not necessarily the case.
For instance, domain abstraction for the root of an inverted

4No information is lost here because we still keep either fork or
inverted fork for each variable of Π.

fork may create independence between the root and its pre-
conditioning parent variables, and exploiting such domain-
abstraction-specific independence relations leads to more
targeted action cost partitioning in Eq. 7. To illustrate such
a surprising “estimate improvement”, notice that, before ap-
plying the domain abstraction as in Eq. 8 on our example, the
truck-moving actions move-D-E and move-E-D appear in
three patterns Πf

t, Πi
p1

and Πi
p2

, while after domain abstrac-
tion they appear in five patterns Πf

t,1, Πi
p1,1, Πi

p1,2, Πi
p1,3 and

Πi
p2,1. However, a closer look at the action sets of these five

patterns reveals that the dependencies of p1 in CG(Πi
p1,1)

and CG(Πi
p1,3), and of p2 in CG(Πi

p2,1) on t are redun-
dant, and thus there is no need to keep the representatives of
move-D-E and move-E-D in the corresponding patterns.
Hence, after all, the two truck-moving actions appear only
in two post-domain-abstraction patterns. Moreover, in both
these patterns the truck-moving actions are fully counted,
and this in contrast to the pre-domain-abstraction patterns
where the portion of the cost of these actions allocated to
Πi

p2
simply gets lost.

Accuracy of Fork-Decomposition Heuristics
Going beyond our running example, obviously we would
like to assess the effectiveness of fork-decomposition heuris-
tics on a wider set of domains and problem instances. A
standard method for that is to implement admissible heuris-
tics within some optimality-preserving search algorithm, run
it against a number of benchmark problems, and count the
number of node expansions performed by the search algo-
rithm. The fewer nodes the algorithm expands, the better.
While such experiments are certainly useful and important,
as noted by Helmert and Mattmüller (2008), their results al-
most never lead to absolute statements of the type “Heuristic
h is well-suited for solving problems from benchmark suite
X”, but only to relative statements of the type “Heuristic h
expands fewer nodes than heuristic h′ on a benchmark suite
X”. Moreover, one would probably like to get a formal cer-
tificate for the effectiveness of her heuristic before proceed-
ing with its implementation.

In what follows, we formally analyze the effectiveness
of the fork-decomposition heuristics similarly to the way
Helmert and Mattmüller (2008) study some state-of-the-
art admissible heuristics. Given domain D and heuristic
h, Helmert and Mattmüller consider the asymptotic per-
formance ratio of h in D. The goal is to find a value
α(h,D) ∈ [0, 1] such that (i) for all states s in all problems
Π ∈ D, h(s) ≥ α(h,D) · h∗(s) + o(h∗(s)), and (ii) there is
a family of problems {Πn}n∈N ⊆ D and solvable, non-goal
states {sn}n∈N such that sn ∈ Πn, limn→∞ h∗(sn) = ∞,
and h(sn) ≤ α(h,D) · h∗(sn) + o(h∗(sn)). In other words,
h is never worse than α(h,D) · h∗ (plus a sublinear term),
and it can become as bad as α(h,D) · h∗ (plus a sublinear
term) for arbitrary large inputs; note that the existence and
uniqueness of α(h,D) are guaranteed for any h and D.

Helmert and Mattmüller (2008) study the asymptotic
performance ratio of the admissible heuristics h+, hk,
hPDB, and hPDB

add on some benchmark domains from the first
four International Planning Competitions, namely GRIPPER,

Domain h+ hk hPDB hPDB
add hF hI hFI

GRIPPER 2/3 0 0 2/3 2/3 0 1/3

LOGISTICS 3/4 0 0 1/2 1/2 1/2 1/2

BLOCKSWORLD 1/4 0 0 0 0 0 0

MICONIC 6/7 0 0 1/2 5/6 1/2 1/2

SATELLITE 1/2 0 0 1/6 1/6 1/6 1/6

Table 1: Performance ratios of multiple heuristics in se-
lected planning domains; ratios for h+, hk, hPDB, hPDB

add are
by Helmert and Mattmüller (2008).

LOGISTICS, BLOCKSWORLD, MICONIC-STRIPS, SATELLITE,
MICONIC-SIMPLE-ADL, and SCHEDULE. (Familiarity with
the domains is assumed; for an overview consult Helmert,
2006b.) The h+ estimate corresponds to the optimal cost
of solving the well-known “ignore-deletes” abstraction of
the original problem, and it is generally NP-hard to com-
pute (Bylander 1994). The hk, k ∈ N+, family of heuris-
tics is based on a relaxation where the cost of reaching a
set of n satisfied atoms is approximated by the highest cost
of reaching a subset of k satisfied atoms (Bonet & Geffner
2001); computing hk is exponential only in k. The hPDB and
hPDB

add heuristics are regular (maximized over) and additive
(summed-up) pattern database heuristics where the size of
each pattern is assumed to be O(log(n)), and (importantly)
the choice of the patterns is assumed to be optimal.

The results of Helmert and Mattmüller provide us with
a baseline for evaluating our admissible heuristics hF, hI,
and hFI corresponding to F-, I-, and FI-decompositions, re-
spectively. At this point, the reader may rightfully wonder
whether some of these three heuristics are not dominated by
the others, and thus are redundant for our analysis. Propo-
sition 6, however, shows that this is not the case—each of
these three heuristics can be strictly more informative than
the other two, depending on the problem instance and/or the
state being evaluated.

Proposition 6 (Undominance) None of the heuristic func-
tions hF, hI, and hFI (with and/or without domain abstrac-
tions) dominate each other.

Table 1 presents now the asymptotic performance ratios
of hF, hI, and hFI in GRIPPER, LOGISTICS, BLOCKSWORLD,
MICONIC-STRIPS, and SATELLITE,5 putting them in line with
the corresponding results of Helmert and Mattmüller for h+,
hk, hPDB, and hPDB

add . We have also studied the ratios of
max{hF, hI, hFI}, and in these five domains they appear to
be identical to these of hF.6 Taking a conservative position,
the performance ratios for the fork-decomposition heuristics
in Table 1 are “worst-case” in the sense that

(i) here we neither optimize the action-cost partitioning
(setting it to “uniform”), nor eliminate clearly redun-
dant patterns, and

5We have not accomplished yet the analysis of MICONIC-
SIMPLE-ADL and SCHEDULE; the action sets in these domains
are much more heterogeneous, and thus more involved for analytic
analysis of fork-decompositions.

6Note that “ratio of max” should not necessarily be identical to
“max of ratios”.

(ii) use domain abstractions to (up to) ternary-valued ab-
stract domains only.

Specifically, the domains of the inverted-fork roots are all
abstracted using the “distance-from-initial-value” ternary-
valued domain decompositions as in Eq. 8, while the do-
mains of the fork roots are all abstracted using the “leave-
one-out” binary-valued domain decompositions as in Eq. 9.

∀ϑi ∈ dom(v) : φv,i(ϑ) =
{

0, ϑ = ϑi

1, otherwise
(9)

In a sketch, the results in Table 1 are obtained as follows.
GRIPPER Assuming n > 0 balls should be moved from one

room to another, all the three heuristics hF, hI, hFI ac-
count for all the required pickup and drop actions, and
only for O(1)-portion of move actions. On the other
hand, the former actions are responsible for 2/3 of the
optimal-plan length (= cost). Now, with the basic uniform
action-cost partition, hF, hI, and hFI account for whole,
O(1/n), and 1/2 of the total pickup/drop actions’ cost,
respectively, providing the ratios as in Table 1.7

LOGISTICS Optimal plan contains at least as much
loads/unloads as move actions, and all the three heuris-
tics hF, hI, hFI fully account for the former, provid-
ing a lower bound of 1/2. An instance on which all
three heuristics achieve exactly 1/2 consists of two trucks
t1, t2, no airplanes, one city, and n packages such that the
initial and goal locations of all the packages and trucks
are all pair-wise different.

BLOCKSWORLD Arguments similar to these of Helmert and
Mattmüller (2008) for hPDB

add .
MICONIC-STRIPS All the three heuristics fully account for

all the loads/unloads. In addition, hF accounts for the full
cost of all the moves to the passengers’ initial locations,
and for half of the cost of all other moves. This provides
us with the lower bounds of 1/2 and 5/6, respectively.
Tightness of 1/2 for hI and hFI is, e.g., on the instance
consisting of n passengers, 2n+1 floors, and all the initial
and goal locations being pair-wise different. Tightness of
5/6 for hF is, e.g., on the instance consisting of n passen-
gers, n + 1 floors, the elevator and all the passengers are
initially at floor n + 1, and each passenger i wishes to get
to floor i.

SATELLITE The length of an optimal plan for a problem
with n images to be taken and k satellites to be moved
to some end-positions is ≤ 6n + k. All the three heuris-
tics fully account for all the image-taking actions, and
one satellite-moving action per satellite as above, pro-
viding a lower bound of 1

6 . Tightness of 1/6 for all
three heuristics is on the following instance: Two satel-
lites with instruments {i}l

i=1 and {i}2l
i=l+1, respectively,

where l = n−
√

n. Each pair of instruments {i, l+ i} can
take images in modes {m0,mi}. There is a set of direc-
tions {dj}n

j=0 and a set of image objectives {oi}n
i=1 such

7We note that a very slight modification of the uniform action-
cost partition results in ratio of 2/3 for all our three heuristics. Such
optimizations, however, are outside of our scope here.

that, for 1 ≤ i ≤ l, oi = (d0,mi), and, for l < i ≤ n,
oi = (di,m0). Finally, the calibration direction for each
pair of instruments {i, l + i} is di.

Overall, the results for fork-decomposition heuristics in
Table 1 are very gratifying. First, note that the performance
ratios for hk and hPDB are all 0. This is because every k-
elementary (for hk) and log(n)-elementary (for hPDB) sub-
goal set can be reached in the number of steps that only de-
pends on k (respectively, log(n)), and not n, while h∗(sn)
grows linearly in n in all the five domains. This leaves
us with hPDB

add being the only state-of-the-art (tractable and)
admissible heuristic to compare with. Table 1 shows that
the asymptotic performance ratio of max{hF, hI, hFI} is at
least as good as this of hPDB

add in all five domains, and it is su-
perior to hPDB

add in MICONIC-STRIPS, getting here quite close
to h+. Comparing between hPDB

add and fork-decomposition
heuristics, it is crucial to recall that the ratios devised by
Helmert and Mattmüller for hPDB

add are with respect to op-
timal, manually-selected set of patterns. In contrast, fork-
decomposition heuristics are completely non-parametric,
and thus require no tuning of the pattern-selection process.

Summary
We presented a generalization of the pattern-database pro-
jections, called structural patterns, that is based on abstract-
ing the problem in hand to provably tractable fragments of
optimal planning. The key motivation behind this general-
ization of PDBs is to alleviate the requirement for the pat-
terns to be of a low dimensionality. We defined the notion
of (additive) causal graph structural patterns (CGSPs), and
studied their potential on a concrete CGSP framework based
on decomposing the problem into a set of fork and inverted
fork components of its causal graph, combined with ab-
stracting the domains of certain variables within these indi-
vidual components. We showed that the asymptotic perfor-
mance ratios of the resulting heuristics on selected planning
domains are at least as good, and sometimes transcends,
these of the state-of-the-art admissible heuristics.

The basic principles of the structural patterns framework
motivate further research in numerous directions, and in par-
ticular, in (1) discovering new islands of tractability of opti-
mal planning, and (2) translating and/or abstracting the gen-
eral planning problems into such islands. Likewise, cur-
rently we explore combining structural patterns (and, in
particular, CGSPs) with PDB-style projection patterns, as
well as with more flexible “merge-and-shrink” abstractions
suggested in (Helmert, Haslum, & Hoffmann 2007). Very
roughly, the idea here is to “glue” and/or “duplicate” cer-
tain variables prior to projecting the problem in hand onto
its tractable structural components. We believe that a suc-
cessful such combination of techniques has a potential to
improve the effectiveness of the heuristics, and in particular
their domain-dependent asymptotic performance ratios.

References
Bäckström, C., and Nebel, B. 1995. Complexity results for
SAS+ planning. Comp. Intell. 11(4):625–655.

Bonet, B., and Geffner, H. 2001. Planning as heuristic
search. AIJ 129(1–2):5–33.
Bylander, T. 1994. The computational complexity of
propositional STRIPS planning. AIJ 69(1-2):165–204.
Culberson, J., and Schaeffer, J. 1998. Pattern databases.
Comp. Intell. 14(4):318–334.
Domshlak, C., and Dinitz, Y. 2001. Multi-agent off-line
coordination: Structure and complexity. In ECP, 277–288.
Edelkamp, S. 2001. Planning with pattern databases. In
ECP, 13–34.
Felner, A.; Korf, R. E.; and Hanan, S. 2004. Additive
pattern database heuristics. JAIR 22:279–318.
Haslum, P., and Geffner, H. 2000. Admissible heuristics
for optimal planning. In ICAPS, 140–149.
Haslum, P.; Botea, A.; Helmert, M.; Bonet, B.; and Koenig,
S. 2007. Domain-independent construction of pattern
database heuristics for cost-optimal planning. In AAAI,
1007–1012.
Haslum, P.; Bonet, B.; and Geffner, H. 2005. New admis-
sible heuristics for domain-independent planning. In AAAI,
1163–1168.
Helmert, M., and Mattmüller, R. 2008. Accuracy of ad-
missible heuristic functions in selected planning domains.
In AAAI. (Extended abstract in the ICAPS’07 workshops).
Helmert, M.; Haslum, P.; and Hoffmann, J. 2007. Flexible
abstraction heuristics for optimal sequential planning. In
ICAPS, 176–183.
Helmert, M. 2003. Complexity results for standard bench-
mark domains in planning. AIJ 146(2):219–262.
Helmert, M. 2004. A planning heuristic based on causal
graph analysis. In ICAPS, 161–170.
Helmert, M. 2006a. The Fast Downward planning system.
JAIR 26:191–246.
Helmert, M. 2006b. Solving Planning Tasks in Theory and
Practice. Ph.D. Dissertation, Albert-Ludwigs University,
Freiburg.
Hoffmann, J.; Sabharwal, A.; and Domshlak, C. 2006.
Friends or foes? An AI planning perspective on abstraction
and search. In ICAPS, 294–303.
Jonsson, P., and Bäckström, C. 1998. State-variable plan-
ning under structural restrictions: Algorithms and com-
plexity. AIJ 100(1–2):125–176.
Jonsson, A. 2007. The role of macros in tractable planning
over causal graphs. In IJCAI, 1936–1941.
Katz, M., and Domshlak, C. 2007. Structural patterns of
tractable sequentially-optimal planning. In ICAPS, 200–
207.
Katz, M., and Domshlak, C. 2008. Optimal additive
composition of abstraction-based admissible heuristics. In
ICAPS (this volume).
Pearl, J. 1984. Heuristics — Intelligent Search Strategies
for Computer Problem Solving. Addison-Wesley.

