
Structural Patterns Heuristics: Basic Idea and Concrete Instance

Michael Katz
Faculty of Industrial Engineering

Technion, Israel
dugi@tx.technion.ac.il

Carmel Domshlak∗

Faculty of Industrial Engineering
Technion, Israel

dcarmel@ie.technion.ac.il

Abstract

Considering admissible heuristics for cost-optimal
planning, we present a generalization of pattern-
database homomorphism abstractions, called
“structural patterns”. The basic idea of structural
patterns boils down to projecting the problem in
hand to provably tractable fragments of optimal
planning. The key motivation behind this general-
ization of PDBs is to alleviate the requirement for
the projections to be of a low dimensionality.

Introduction
The difference between various algorithms for planning
as heuristic search is mainly in the heuristic functions
they define and use. Most typically, an (admissible)
heuristic function for domain-independent planning is
defined as the (optimal) cost of achieving the goals in an
over-approximating abstraction of the planning prob-
lem in hand (Pearl 1984; Bonet & Geffner 2001). Such
an abstraction is obtained by relaxing certain constraints
that are present in the specification of the real problem,
and the desire is to obtain a tractable (that is, solvable
in polynomial time), and, at the same time, informa-
tive abstract problem. The main question is thus: What
constraints should we relax to obtain such an effective
over-approximating abstraction?

Conceptually, one can distinguish between homo-
morphism and embedding abstractions, and the for-
mer are our focus in this paper. A homomorphism
abstraction systematically contracts several states to
create a single abstract state. Most typically, such a
state-gluing is obtained by projecting the original prob-
lem onto a subset of its parameters, as if ignoring
the constraints that fall outside the projection. Ho-
momorphisms have been successfully explored in the
scope of domain-independent pattern database (PDB)
heuristics (Edelkamp 2001; Haslum, Bonet, & Geffner

∗The work of both authors is partly supported by Israel
Science Foundation and C. Wellner Research Fund.
Copyright c© 2007, American Association for Artificial Intel-
ligence (www.aaai.org). All rights reserved.

2005), inspired by the (similarly named) problem-
specific heuristics for search problems such as (k2−1)-
puzzles, Rubik’s Cube, etc. (Culberson & Schaeffer
1998). A core property of the PDB heuristics is that
the problem is projected onto a space of small (up to
logarithmic) dimensionality so that reachability analy-
sis in that space could be done by exhaustive search.
Note that this constraint implies an inherent scalability
limitation of the PDB heuristics—as the problems of in-
terest grow, limiting patterns to logarithmic dimension-
ality will unavoidably make them less and less informa-
tive with respect to the original problems.

In this paper we suggest a generalization of the PDB
abstractions to what we call “structural patterns”. In
itself, the idea of structural patterns is simple, and it cor-
responds to projecting the original problem to provably
tractable fragments of optimal planning. At least theo-
retically, moving to structural patterns alleviates the re-
quirement for the projections to be of a low dimension-
ality. Moreover, we show that the idea is not of a theo-
retical interest only. We introduce a concrete structural
patterns abstraction based on decomposing the problem
in hand along its causal graph, and show that the in-
duced admissible heuristic can provide more informa-
tive estimates than its state-of-the-art alternatives.

Formalism and Notation
Problems of classical planning correspond to reacha-
bility analysis in state models with deterministic ac-
tions and complete information. In this work we fo-
cus on state models corresponding to the SAS+ formal-
ism (Bäckström & Nebel 1995) that captures problems
with multi-valued state variables.

Definition 1 A SAS+ problem instance is given by a
quadruple Π = 〈V,A, I,G〉, where:

• V = {v1, . . . , vn} is a set of state variables, each
associated with a finite domain dom(vi).

• the initial state I is a complete assignment, and the
goal G is a partial assignment to V .

A

C

D

B

E

F

G

t

c2

c1
c3

p1

p2

Figure 1: Logistics example adapted from Helmert
(2006). Deliver p1 from C to G, and p2 from F to E
using the cars c1, c2, c3 and truck t, and making sure
that c3 ends up at F . The cars may only use city roads
(thin edges), the truck may only use the highway (thick
edge).

• A = {a1, . . . , aN} is a finite set of actions, where
each action a is a pair 〈pre(a), eff(a)〉 of partial as-
signments to V called preconditions and effects, re-
spectively. Each action a ∈ A is associated with a
non-negative real-valued cost C(a).

An action a is applicable in a state s ∈ dom(V) iff
s[v] = pre(a)[v] whenever pre(a)[v] is specified. Ap-
plying a changes the value of v to eff(a)[v] if eff(a)[v]
is specified. In this work we focus on cost-optimal
(also known as sequentially optimal) planning in which
the task is to find a plan ρ ∈ A∗ for Π minimizing∑

a∈ρ C(a).
Across the paper we use a slight variation of a Lo-

gistics example of Helmert (2006). This example is de-
picted in Figure 1, and in SAS+ it has

V = {p1, p2, c1, c2, c3, t}
dom(p1) = dom(p2) =

= {A,B,C, D, E, F,G, c1, c2, c3, t}
dom(c1) = dom(c2) = {A,B,C, D}
dom(c3) = {E,F,G}
dom(t) = {D,E}

I = {p1 ←[C, p2 ←[F, t←[E,

c1 ←[A, c2 ←[B, c3 ←[G}
G = {p1 ←[G, p2 ←[E, c3 ←[F},
A = {a1, . . . , a70},

where the actions correspond to all possible loads and
unloads, plus single-segment movements of the vehi-
cles. For instance, if action a captures loading p1 into
c1 at C, then pre(a) = {p1 ←[C, c1 ←[C}, and
eff(a) = {p1 ←[c1}.

Definition 2 The causal graph CG(Π) = (V,E) of a
SAS+ problem Π = 〈V,A, I,G〉 is a digraph over the
nodes V . An arc (v, v′) belongs to CG(Π) iff v 6= v′

and there exists an action a ∈ A such that eff(a)[v′],
and either pre(a)[v] or eff(a)[v] are specified.

c₁ c₂ c₃ t

p₁ p₂

(a)

A

C

D

B

E

F

G

D E

(b)

at A at B at C at D at E at F at G

in c₂

in c₁ in t

in c₃

(c)

Figure 2: (a) Causal graph; (b) DTGs (labels omitted)
of c1 and c2 (left), t (centre), and c3 (right); (c) DTG of
p1 and p2.

In what follows, for each v ∈ V , by pred(v) and
succ(v) we refer to the sets of all immediate predeces-
sors and successors of v in CG(Π). Likewise, for any
partial assignment x to V , and any V ′ ⊆ V , by x[V ′]

we refer to the projection of x onto V ′.

Definition 3 Let Π = 〈V,A, I,G〉 be a SAS+ prob-
lem, and let v ∈ V . The domain transition graph
DTG(v,Π) of v in Π is an arc-labeled digraph over
the nodes dom(v) such that an arc (ϑ, ϑ′) belongs to
DTG(v,Π) iff there is an action a ∈ A with eff(a)[v] =
ϑ′, and either pre(a)[v] is unspecified or pre(a)[v] = ϑ.
In that case, the arc (ϑ, ϑ′) is labeled with pre(a)[V \{v}]

and C(a).

Figure 2 depicts the causal and (labels omitted) do-
main transition graphs for our running example prob-
lem Π. Here we note (and later exploit) that Π belongs
to the class of unary-effect, 1-dependent SAS+ prob-
lems (Katz & Domshlak 2007), that is, for all a ∈ A,
we have (i) |eff(a)| = 1, and (ii) if eff(a) is specified
for V ′ ⊆ V , then |pre(a)[V \V ′]| ≤ 1.

From PDBs to Structural Patterns?
Given a problem Π = 〈V,A, I,G〉, each subset of vari-
ables V ′ ⊆ V defines a pattern abstraction Π[V ′] =
〈V ′, A[V ′], I [V ′], G[V ′]〉 by intersecting the initial state,
the goal, and all the actions’ preconditions and effects

2

with V ′ (Edelkamp 2001)1. The idea behind the PDB
heuristics is elegantly simple. First, we select a (rela-
tively small) set of subsets V1, . . . , Vm of V such that,
for 1 ≤ i ≤ m,
(a) Π[Vi] is an over-approximating abstraction of Π,
(b) the size of Vi is sufficiently small to perform reach-

ability analysis in Π[Vi] by an (either explicit or
symbolic) exhaustive search.

Let h[Vi](s) be the optimal cost of achieving the ab-
stract goal G[Vi] from the abstract state s[Vi]. To ob-
tain an admissible heuristic, if the set of abstract prob-
lems Π[V1], . . . ,Π[Vk] satisfy certain requirements of
disjointness (Felner, Korf, & Hanan 2004; Edelkamp
2001), the PDB heuristic can be set to h(s) =∑m

i=1 h[Vi](s). Otherwise, one can set h(s) =
maxm

i=1 h[Vi](s) (Holte et al. 2006).
The Achilles heel of the PDB heuristics is that each

pattern (that is, each selected subset of variables Vi) is
required to be small so that reachability analysis in Π[Vi]

could be done by exhaustive search. In short, com-
puting h[Vi](s) in polynomial time requires satisfying
|Vi| = O(log |V |). Note that this constraint implies
an inherent scalability limitation of the PDB heuristics.
As the problems of interest grow, limiting patterns to
logarithmic dimensionality will unavoidably make them
less and less informative with respect to the original
problems, and this unless the domain forces its problem
instances to consist of small, loosely-coupled subprob-
lems that can be captured well by individual patterns.

However, pattern databases are not necessarily the
only way to proceed. In principle, given a SAS+ prob-
lem Π = 〈V,A, I,G〉, one can select a (relatively
small) set of subsets V1, . . . , Vm of V such that, for
1 ≤ i ≤ m,
(a) Π[Vi] is an over-approximating abstraction of Π,

(b) the reachability analysis in Π[Vi] is tractable (not
necessarily due to the size of but) due to the specific
structure of Π[Vi].

What is important here is that the second requirement
can be satisfied even if the size of each selected pattern
Vi is Θ(|V |).

A priori, this generalization of the PDB idea to struc-
tural patterns is appealing as it allows using patterns
of unlimited dimensionality. The pitfall, however, is
that such structural patterns correspond to tractable
fragments of cost-optimal planning, and the palette of
such known fragments is extremely limited (Bäckström
& Nebel 1995; Bylander 1994; Jonsson & Bäckström
1998; Jonsson 2007). Next, however, we show that this

1An additional way to define pattern abstractions has been
recently suggested by Hoffmann et al. (2006). However, the
difference between the two approaches is not critical for our
discussion here.

palette can still be extended, and such extensions may
allow us to materialize the idea of structural patterns
heuristics.

Causal Graph Structural Patterns
We begin with providing a syntactically slight, yet se-
mantically very important for us generalization of the
mechanism for constructing disjoint decompositions of
planning problems along subsets of their state variables.

Definition 4 Let Π = 〈V,A, I,G〉 be a SAS+ problem,
and let V = {V1, . . . , Vm} be a set of some subsets of
V . A disjoint decomposition of Π over V is a set of
SAS+ problems Π = {Π1, . . . ,Πm}, such that
(1) For each Πi = 〈Vi, Ai, Ii, Gi〉, we have

(a) Ii = I [Vi], Gi = G[Vi], and

(b) if a[Vi] def= 〈pre(a)[Vi], eff(a)[Vi]〉, then

Ai = {a[Vi] | a ∈ A ∧ eff(a)[Vi] 6= ∅}.

(2) Each a ∈ A satisfies

C(a) ≥
m∑

i=1

Ci(a[Vi]). (1)

Definition 4 generalizes the idea of “all-or-nothing”
action cost partitioning from the literature on PDBs dis-
joining to arbitrary action cost partitioning. In short,
the original cost of each action is distributed this or an-
other way among the “representatives” of that action in
the subproblems, with Eq. 1 being the only constraint
posed on this cost distribution.

Proposition 1 For any SAS+ problem Π =
〈V,A, I,G〉, any set of V ’s subsets V = {V1, . . . , Vm},
and any disjoint decomposition of Π over V , we have
h∗(I) ≥

∑m
i=1 h∗i (I

[Vi]).

Proof sketch: If ρ = a1 · a2 · . . . · as is a cost-optimal
plan for Π, then h∗(I) = C(ρ) =

∑s
i=1 C(ai). For

1 ≤ i ≤ m, let ρ[Vi] = a
[Vi]
1 · a[Vi]

2 · . . . · a[Vi]
s . From (1)

in Definition 4, we have ρ[Vi] being a (not necessary op-
timal) plan for Πi, and thus h∗i (I

[Vi]) ≤ Ci(ρ[Vi]) =∑s
j=1 Ci(a

[Vi]
j). From (2) in Definition 4 we then

have
∑m

i=1 h∗i (I
[Vi]) ≤

∑m
i=1

∑s
j=1 Ci(a

[Vi]
j) =∑s

j=1

∑m
i=1 Ci(a

[Vi]
j) ≤

∑s
j=1 C(aj) = h∗(I).

Although disjoint decomposition over subsets of
variables is rather powerful, it is too general for our
purposes because it does not account for any struc-
tural requirements one may have for the abstract prob-
lems. For instance, focusing on the causal graph, when
we project the problem onto subsets of its variables,

3

we leave all the causal-graph connections between the
variables in each projected problem untouched. How-
ever, as here we aim at receiving abstract problems with
causal graphs of specific structure, we should somehow
project the original problem onto a subgraph (or a set
of subgraphs) of the causal graph respecting such struc-
tural requirements. This leads us to introducing what
we call causal graph structural patterns.

Definition 5 Let Π = 〈V,A, I,G〉 be a SAS+ problem,
and G = (VG , EG) be a subgraph of the causal graph
CG(Π). A causal-graph structural pattern (CGSP)
ΠG = 〈VG , AG , IG , GG〉 is a SAS+ problem defined as
follows.

1. IG = I [VG], GG = G[VG],
2. AG =

⋃
a∈A AG(a), where each AG(a) =

{a1, . . . , al(a)}, l(a) ≤ |eff(a)|, is a set of actions
over VG such that
(a) for each ai ∈ AG(a), if eff(ai)[v′], and ei-

ther eff(ai)[v] or pre(ai)[v] are specified, then
(v, v′) ∈ G.

(b) for each (v, v′) ∈ G, and each ai ∈ AG(a), if
eff(ai)[v′] is specified, then either eff(ai)[v] or
pre(ai)[v] is specified as well.

(c) for each s ∈ dom(VG), if pre(a)[VG] ⊆ s, then
the action sequence ρ = a1 · a2 · . . . · al(a) is
applicable in s, and if applying ρ in s results in
s′ ∈ dom(VG), then s′ \ s = eff(a).

(d) C(a) ≥
∑l(a)

i=1 CG(ai).

Corollary 1 For any SAS+ problem Π = 〈V,A, I,G〉,
and any subgraph G = (VG , EG) of the causal graph
CG(Π), we have CG(ΠG) = G.

Proposition 2 For any SAS+ problem Π =
〈V,A, I,G〉, and any subgraph G = (VG , EG) of
the causal graph CG(Π), at least one CGSP ΠG can be
efficiently constructed from Π.

The detailed proof of Proposition 2 is omitted here,
but one possible construction of the action sets AG(a) is
as follows—if {v1, . . . , vk} is the subset of VG affected
by a, then AG(a) = {a1, . . . , ak} with

eff(ai)[v] =

(
eff(a)[v], v = vi

unspecified, otherwise

pre(ai)[v] =

8>>><>>>:
eff(a)[v], v = vj ∧ j < i ∧ (vj , vi) ∈ EG

pre(a)[v], v = vj ∧ j > i ∧ (vj , vi) ∈ EG

pre(a)[v], v = vi

unspecified, otherwise

Now, given a SAS+ problem Π and a subgraph G of
CG(Π), if the structural pattern ΠG can be solved cost-
optimally in polynomial time, we can use its solution

as an admissible heuristic for Π. Moreover, given a set
G = {G1, . . . ,Gm} of subgraphs of the causal graph
CG(Π), these heuristic estimates for structural patterns
{ΠG1 , . . . ,ΠGm} are additive if holds a certain property
given by Definition 6.

Definition 6 Let Π = 〈V,A, I,G〉 be a SAS+ problem,
and G = {G1, . . . ,Gm} be a set of subgraphs of the
causal graph CG(Π). A disjoint CGSP decomposition
of Π over G is a set of CGSPs Π = {ΠG1 , . . . ,ΠGm

}
such that each action a ∈ A satisfies

C(a) ≥
m∑

i=1

∑
a′∈AGi

(a)

CGi(a
′), (2)

Proposition 3 For any SAS+ problem Π =
〈V,A, I,G〉, any set of CG(Π)’s subgraphs
G = {G1, . . . ,Gm}, and any disjoint CGSP decompo-
sition of Π over G, we have h∗(I) ≥

∑m
i=1 h∗i (IGi).

Proof sketch: If ρ = a1 · a2 · . . . · as is a cost-optimal
plan for Π, then h∗(I) = C(ρ) =

∑s
j=1 C(aj). By

Definition 5, for 1 ≤ i ≤ m, we have

ρGi
= a1

1 · . . . · a
l(a1)
1 · . . . · a1

s · . . . · al(as)
s

being a (not necessary cost-optimal) plan for the CGSP
ΠGi

. Given that, we have h∗i (IGi
) ≤ CGi

(ρGi
) =∑s

j=1

∑
a′∈AGi

(aj)
CGi

(a′). From Eq. 2, for 1 ≤ j ≤ s,
we have

∑m
i=1

∑
a′∈AGi

(aj)
CGi

(a′) ≤ C(aj), and thus∑m
i=1 h∗i (IGi) ≤

∑m
i=1

∑s
j=1

∑
a′∈AGi

(aj)
CGi

(a′) =∑s
j=1

∑m
i=1

∑
a′∈AGi

(aj)
CGi(a

′) ≤
∑s

j=1 C(aj) =
h∗(I).

Relying on Proposition 3, we can now decompose
any given problem Π into a set of tractable CGSPs
Π = {ΠG1 , . . . ,ΠGm

}, solve all these CGSPs in poly-
nomial time, and derive an admissible heuristic for Π.
Note that (similarly to Def. 4) Def. 6 leaves the decision
about the actual partition of the action costs rather open.
In our discussion henceforth, we consider the (kind of
“least-committing”) uniform action-cost partitioning in
which the action cost is equally split among its non-
redundant projections in Π.

Disjoint Fork-Decompositions
We now introduce certain decomposition of SAS+ plan-
ning problems along their causal graphs. In itself, this
decomposition does not lead to structural patterns ab-
stractions, yet it provides an important building block
on our way towards them.

Definition 7 Let Π = 〈V,A, I,G〉 be a SAS+ problem.
The fork-decomposition

Π = {ΠGf
v
,ΠG if

v
}v∈V

4

c₁

p₁ p₂

c₁ c₂ c₃ t

p₁

CG(Πf
c1

) CG(Πif
p1

)

Figure 3: Causal graphs of a fork and an inverted fork
structural patterns of the running example.

is a disjoint CGSP decomposition of Π over subgraphs
G = {Gf

v,G if
v }v∈V where, for v ∈ V ,

VGf
v

= {v} ∪ succ(v), EGf
v

=
⋃

u∈succ(v)

{(v, u)}

VG if
v

= {v} ∪ pred(v), EG if
v

=
⋃

u∈pred(v)

{(u, v)}

Illustrating Definition 7, let us consider the (uni-
form) fork-decomposition of the problem Π from our
running example, assuming all the actions in Π have
the same unit cost. After eliminating from G all the
singletons2, we get G = {Gf

c1
,Gf

c2
,Gf

c3
,Gf

t ,G if
p1

,G if
p2
}.

Considering the action sets of the problems in Π,
each original driving action is present (by its pro-
jections) in some three problems in Π, while each
load/unload action is present in some five such prob-
lems. For instance, the projections of the action “drive-
c1-from-A-to-D” are present in {Πf

c1
,Πif

p1
,Πif

p2
}, and

the projections of the action “load-p1-into-c1-at-A” are
present in {Πf

c1
,Πf

c2
,Πf

c3
,Πf

t,Π
if
p1
}. Since our fork-

decomposition is uniform, the cost of each driving
(load/unload) action projection is set to 1/3 (respec-
tively, to 1/5).

From Proposition 3 we have that the sum of costs of
solving the problems Π, that is,

h! =
∑
v∈V

(
h∗Πf

v
+ h∗Πif

v

)
, (3)

is an admissible estimate of h∗. The question now is
how good this estimate is. The optimal cost of solving
our problem is 19, and

h! = h∗Πf
c1

+ h∗Πf
c2

+ h∗Πf
c3

+ h∗Πf
t
+ h∗Πif

p1
+ h∗Πf

p2
=

= 8
5 + 8

5 + (8
5 + 6

3) + (8
5 + 2

3) + (6
5 + 9

3) + (2
5 + 4

3) =
= 15

(4)

Taking as a basis for comparison the seminal hmax

and h2 heuristics (Bonet & Geffner 2001; Haslum &
Geffner 2000), we have hmax = 8 and h2 = 13. Hence,
it appears that using the additive CGSP heuristic h! is
at least promising.

2If the causal graph CG(Π) is connected and n > 1, then
this elimination is not lossy.

Unfortunately, despite the seeming simplicity of the
problems in Π, turns out that fork-decompositions
by themselves do not fit the requirements of the
structural patterns framework. The causal graphs
of {Πf

c1
,Πf

c2
,Πf

c3
,Πf

t} and {Πif
p1

,Πif
p2
} form directed

forks and inverted forks, respectively (see Figure 3),
and, in general, the number of variables in each such
problem is Θ(n). Unfortunately for us, Domshlak
and Dinitz (2001) show that even non-optimal planning
for SAS+ problems with fork and inverted fork causal
graphs is NP-complete. Moreover, even if the domain-
transition graphs of all the projections are strongly con-
nected, optimal planning for forks and inverted forks
remain NP-hard (see Helmert (2003) and (2004) for
the respective results). However, in the next section
we show that this is not the end of the story on fork-
decompositions.

Meeting Structural and Domain
Abstractions

While hardness of optimal planning for problems with
fork and inverted fork causal graphs put a shadow on
relevance of fork-decompositions, closer look at the
proofs of these hardness results of Domshlak and Dinitz
(2001) and Helmert (2003; 2004) reveals that these
proofs in particular rely on root variables having large
domains. It turns out that this dependence is not inci-
dental, and Propositions 4 and 5 below present some
significant islands of tractability within these structural
fragments of SAS+.

Proposition 4 Given a SAS+ problem Π =
〈V,A, I,G〉 inducing a fork causal graph with a
root r ∈ V , if (i) |dom(r)| = 2, or (ii) for all v ∈ V ,
we have |dom(v)| = O(1), then finding a cost-optimal
plan for Π is poly-time.

Proof sketch: First, if |dom(r)| = 2, let dom(r) =
{0, 1}, where I[r] = 0. Let σ(r) be a 0/1 sequence of
length 1 + d, where d = maxu∈succ(r) |dom(u)|, and,
for 1 ≤ i ≤ |σ(r)|,

σ(r)[i] =
{

0, i is odd,

1, i is even

Finally, let �∗[σ(r)] be the set of all non-empty prefixes
of σ(r) if G[r] is unspecified, and the set of all non-
empty prefixes of σ(r) ending with G[r] otherwise.
(1) For each u ∈ succ(r), let DTG0

u and DTG1
u be

the subgraphs of DTG(u, Π) obtained by remov-
ing from the latter all the arcs labeled with 1 and
0, respectively. For each u ∈ succ(r), and each
x, y ∈ dom(u), compute the shortest (that is, cost-
minimal) paths from x to y in DTG0

u and DTG1
u.

(2) For each σ ∈ �∗[σ(r)], and each u ∈ succ(r),
build a layered digraph Lu(σ) with |σ| + 1 layers

5

L0, . . . , L|σ|, where L0 consists of only I[u], and
for 1 ≤ i ≤ |σ|, Li consists of all nodes reachable
from the nodes Li−1 in DTG0

u if i is odd, and in
DTG1

u if i is even. For each x ∈ Li−1, y ∈ Li,
Lu(σ) contains an arc (x, y) weighted with the cost
of the cost-minimal path from x to y in DTG0

u if i
is odd, and in DTG1

u if i is even.
(3) For each σ ∈ �∗[σ(r)], let |σ| = s. A candidate

plan ρσ for Π is constructed as follows.
(a) For each u ∈ succ(r), find a cost-minimal path

from I[u] to G[u] in Lu(σ). Note that the i-th
edge on this path (taking us from x ∈ Li−1 to
y ∈ Li) corresponds to the cost-minimal path
from x to y in either DTG0

u or DTG1
u. Let us

denote this path from x to y by Si
u.

(b) Set ρσ = S1 · aσ[2] · S2 · . . . · aσ[s] · Ss, where
sequence Si is obtained by an arbitrary merge
of the sequences {Si

u}u∈succ(r), and aα is the
action that changes the value of r to α.

(4) Set and return ρ = argminσ∈�∗[σ(r)] C(ρσ).

It is not hard to verify that the complexity of the
above procedure is polynomial in the description size
of Π, and that the constructed plan ρ is cost-optimal.

We omit here the proof of the second case, and only
note that a rather simple analysis upper-bounds the time
complexity for this case by Θ(ddd+2+2d+2) = O(1).
While for practice this “constant” bound is rather sar-
castic, here we have not tried to be complexity-optimal
either. Finding more realistic bounds for this concrete
problem is definitely of interest.

Proposition 5 Given a 1-dependent SAS+ problem
Π = 〈V,A, I,G〉 inducing an inverted fork causal
graph with a root r ∈ V , if |dom(r)| = O(1), then
finding a cost-optimal plan for Π is poly-time.

Proof sketch: Let |dom(r)| = d. A naive algorithm
that finds a cost-optimal plan for Π in time Θ(dd+1 +
|Π|3) = Θ(|Π|3) is as follows.
(1) Create all Θ(dd) cycle-free paths from I[r] to G[r]

in DTG(r, Π).
(2) For each u ∈ pred(r), and each x, y ∈ dom(u),

compute the cost-minimal path from x to y in
DTG(u, Π).

(3) For each path in DTG(r, Π) generated in step (1),
construct a plan for Π based on that path for r, and
the shortest paths computed in (2).

(4) Take minimal cost plan from (3).
The time complexity of this algorithm is Θ(|Π|3), and
it finds a optimal plan, if such exist. The latter can be
shown as follows. For each cost-optimal plan ρ, it is
easy to verify that ρ↓r is one of the paths generated in

step (1). For each u ∈ pred(r), let Su denote the se-
quence of values from dom(u) that is required by the
prevail conditions of the actions along ρ↓r. If so, for
each u ∈ pred(r), ρ↓u corresponds to a path from I[u]
to G[u] in DTG(u, Π), traversing the values (= nodes)
in Su in the order required by Su. And a plan for Π
generated in (3) consists of minimal such paths for all
u ∈ pred(r). Therefore, at least one of the plans gener-
ated in (3) will be cost-optimal for Π.

Propositions 4 and 5 allow us to meet between the
fork-decompositions and tractable structural patterns at
least for 1-dependent planning domains such as Logis-
tics3. The basic idea is to further abstract each CGSP
in fork-decomposition of Π by abstracting domains of
its variables to meet the requirements of the tractable
fragments.

Definition 8 Let Π = 〈V,A, I,G〉 be a SAS+ problem,
v ∈ V , and let Φ = {φ1, . . . , φk} be a set of map-
pings from dom(v) to some sets Γ1, . . . ,Γk. A disjoint
domain decomposition of Π over Φ is a set of SAS+

problems Π = {Π1, . . . ,Πk}, such that
(1) For each Πi = 〈Vi, Ai, Ii, Gi〉, we have4

(a) Ii = φi(I), Gi = φi(G), and

(b) if φi(a) def= 〈φi(pre(a)), φi(eff(a))〉, then

Ai = {φi(a) | a ∈ A ∧ φi(eff(a)) 6⊆ φi(pre(a))}.

(2) Each a ∈ A satisfies

C(a) ≥
k∑

i=1

Ci (φi(a)). (5)

Proposition 6 For any SAS+ problem Π =
〈V,A, I,G〉, any v ∈ V , any set of domain abstractions
Φ = {φ1, . . . , φk}, and any disjoint domain decompo-
sition of Π over Φ, we have h∗(I) ≥

∑k
i=1 h∗i (φi(I)).

Targeting tractability of the causal graph structural
patterns, we connect between fork-decompositions and
domain decompositions as in Definition 8. Given a
fork-decomposition Π = {Πf

v,Πif
v}v∈V of Π,

• For each Πf
v ∈ Π,

(a) Associate the root r of CG(Πf
v) with mappings

Φv = {φv,1, . . . , φv,kv
}, kv = O(poly(|Π|)), and

all φv,i : dom(r)→ {0, 1}.
3If the problem of interest falls outside this problem class,

then it should (and could) be first abstracted to a problem
within that class. The palette of concrete choices for such an
abstraction is rather wide, and currently we investigate their
relative pros and cons.

4For a partial assignment S on V , φi(S) denotes the ab-
stracted partial assignment obtained from S by replacing S[v]
(if any) with φi(S[v]).

6

(b) Disjointly decompose Πf
v into Πf

v = {Πf
v,i}

kv
i=1

over Φv .

• For each Πif
v ∈ Π,

(a) Associate the root r of CG(Πif
v) with mappings

Φ′
v = {φ′v,1, . . . , φ

′
v,k′v
}, k′v = O(poly(|Π|)), all

φ′v,i : dom(r)→ {0, 1, . . . , bv,i}, bv,i = O(1).

(b) Disjointly decompose Πif
v into Πif

v = {Πif
v,i}

k′v
i=1

over Φ′
v .

For 1-dependent problems Π, from Proposition 3
and 6 we then have

h! =
∑
v∈V

 kv∑
i=1

h∗Πf
v,i

+
k′v∑
i=1

h∗Πif
v,i

, (6)

being an admissible estimate of h∗ for Π, and from
Propositions 4-5 we have that h! is also computable in
polynomial time. The question is, however, how further
abstracting our fork-projections affects the informative-
ness of the heuristic estimate. As we show later, the
answer is somewhat surprising.

Let us again use our running example to illustrate
the mixture of structural and domain projections as out-
lined above. To begin with an extreme setting of domain
abstractions, first, let the domain abstractions for roots
of both forks and inverted forks be to binary domains.
Among multiple options for choosing the mapping sets
{Φv} and {Φ′

v}, here we use a simple choice of dis-
tinguishing between different values of each variable v
on the basis of their distance from I[v] in DTG(v,Π).
Specifically, for each v ∈ V , we set Φv = Φ′

v , and, for
each value ϑ ∈ dom(v),

φv,i(ϑ) = φ′v,i(ϑ) =
{

0, d(I[v], ϑ) < i

1, otherwise

For instance, the problem Πf
c1

is decomposed (see Fig-
ure 2b) into two problems, Πf

c1,1 and Πf
c1,2, with the

0/1 abstract domain of c1 corresponding to the parti-
tions {A}/{B,C,D} and {A,D}/{B,C} of dom(c1),
respectively. The (interesting for certain reasons be-
low) problem Πif

p1
is decomposed (see Figure 2c) into

six problems Πf
p1,1, . . . ,Π

f
p1,6 along the abstractions of

dom(p1) depicted in Figure 4.
Now, given the decomposition of Π over forks and
{Φv,Φ′

v}v∈V as above, consider the problem Πp1,1, ob-
tained from projecting Π onto the inverted fork of p1

and then abstracting dom(p1) using

φp1,1(ϑ) =
{

0, ϑ ∈ {C}
1, ϑ ∈ {A,B,D, E, F,G, c1, c2, c3, t}

It is not hard to verify that, from the original actions
affecting p1, in Πp1,1 we are left only with actions con-

at A at B at C at D at E at F at G

in c₂

in c₁ in t

in c₃

Figure 4: Binary-range domain abstractions for Πp1 .
The values within and outside each dashed curve are
mapped to 0 and 1, respectively.

ditioned by c1 and c2. If so, then no information is lost5
if we

1. remove from Πp1,1 both the variables c3 and t, and
the actions changing (only) these variables, and

2. redistribute the (fractioned) cost of the removed ac-
tions between all other representatives of their origi-
nals in Π.

The latter revision of the action cost partitioning is ob-
tained directly by replacing the cost-partitioning steps
corresponding to Eqs. 2 and 5 by a single, joint ac-
tion cost partitioning applied over the final projections⋃

v∈V (Πf
v ∪Πif

v) and satisfying

C(a) ≥
∑
v∈V

 kv∑
i=1

∑
a′∈AGf

v
(a)

Cf
v,i(φv,i(a′)) +

k′v∑
i=1

∑
a′∈AGif

v
(a)

C if
v,i(φ

′
v,i(a

′))

(7)

Overall, computing h! as in Eq. 6 under these “all
binary range domain abstractions” provides us with
h! = 12 7

15 , and knowing that the original costs are
all integers we can safely adjust it to h! = 13. Hence,
even under most severe domain abstractions as above,
h! on our example problem does not fall from h2.

Let us now slightly relax our domain abstractions for
the roots of the inverted forks to be to the ternary range
{0, 1, 2}. While mappings {Φv} stay as before, {Φ′

v} is
set to

∀ϑ ∈ dom(v) : φ′v,i =

0, d(I[v], ϑ) < 2i− 1
1, d(I[v], ϑ) = 2i− 1
2, d(I[v], ϑ) > 2i− 1

5One of the reasons why no information is lost is the fact
that we keep either fork or inverted fork for each variable of
Π. In any event, here we omit further formal justifications of
this optimization step.

7

at A at B at C at D at E at F at G

in c₂

in c₁ in t

in c₃

at A at B at C at D at E at F at G

in c₂

in c₁ in t

in c₃

at A at B at C at D at E at F at G

in c₂

in c₁ in t

in c₃

dom(p1) in Πf
p1,1 dom(p1) in Πf

p1,2 dom(p1) in Πf
p1,3

Figure 5: Ternary-range domain abstractions for Πp1 ; values that mapped to the same abstract value are shown as
nodes with the same color and borderline.

For instance, the problem Πif
p1

is decomposed now into
three problems Πf

p1,1, . . . ,Π
f
p1,3 along the abstractions

of dom(p1) depicted in Figure 5.
Applying now the same computation of h! as in

Eq. 6 over our new set of domain abstractions gives
h! = 15 1

2 , which, again, can be safely adjusted to
h! = 16. Note that this value is higher than h! =
15 obtained using the fork-decomposition alone (as in
Eq. 3). At first view, this outcome may seem counter-
intuitive as the domain abstractions are applied over the
fork-decomposition. The explanation, however, is that
(as shown above) the domain abstractions for the roots
of inverted forks may create independence between the
roots and their preconditioning variables. And exploit-
ing such domain-abstraction specific independence re-
lations leads to more targeted action cost partitioning as
in Eq. 7.

Discussion

We presented a structural-patterns generalization of
PDB abstractions that is based on projecting the prob-
lem in hand to provably tractable fragments of optimal
planning. The key motivation behind this generaliza-
tion is to alleviate the requirement for the projections to
be of a low dimensionality. To show the practical po-
tential of the basic idea, we introduced and looked into
a concrete structural patterns abstraction based on de-
composing the problem into a set of fork and inverted
fork components of its causal graph, combined with ab-
stracting the domains of certain variables within these
individual components.

The basic principles of the structural patterns frame-
work motivate further research in numerous directions,
and in particular, in (1) discovering new islands of
tractability of optimal planning, and (2) translating
and/or abstracting the general planning problems into
such islands. In our ongoing work we aim at pursu-
ing both these directions by “mining” the tractable frag-
ments of optimal SAS+ planning, and, in particular, of
planning with unary-effect actions (Katz & Domshlak
2007), and by performing formal and empirical analy-
sis of alternative schemes for abstracting general SAS+

problems to meet the specification of such islands of
tractability.

References
Bäckström, C., and Nebel, B. 1995. Complexity re-
sults for SAS+ planning. Comp. Intell. 11(4):625–655.
Bonet, B., and Geffner, H. 2001. Planning as heuristic
search. AIJ 129(1–2):5–33.
Bylander, T. 1994. The computational complexity of
propositional STRIPS planning. AIJ 69(1-2):165–204.
Culberson, J., and Schaeffer, J. 1998. Pattern
databases. Comp. Intell. 14(4):318–334.
Domshlak, C., and Dinitz, Y. 2001. Multi-agent off-
line coordination: Structure and complexity. In ECP,
277–288.
Edelkamp, S. 2001. Planning with pattern databases.
In ECP, 13–34.
Felner, A.; Korf, R. E.; and Hanan, S. 2004. Additive
pattern database heuristics. JAIR 22:279–318.
Haslum, P., and Geffner, H. 2000. Admissible heuris-
tics for optimal planning. In ICAPS, 140–149.
Haslum, P.; Bonet, B.; and Geffner, H. 2005. New ad-
missible heuristics for domain-independent planning.
In AAAI, 1163–1168.
Helmert, M. 2003. Complexity results for standard
benchmark domains in planning. AIJ 146(2):219–262.
Helmert, M. 2004. A planning heuristic based on
causal graph analysis. In ICAPS, 161–170.
Helmert, M. 2006. The Fast Downward planning sys-
tem. JAIR 26:191–246.
Hoffmann, J.; Sabharwal, A.; and Domshlak, C. 2006.
Friends or foes? An AI planning perspective on ab-
straction and search. In ICAPS, 294–303.
Holte, R. C.; Felner, A.; Newton, J.; Meshulam, R.;
and Furcy, D. 2006. Maximizing over multiple pat-
tern databases speeds up heuristic search. AIJ 170(16-
17):1123–1136.
Jonsson, P., and Bäckström, C. 1998. State-variable
planning under structural restrictions: Algorithms and
complexity. AIJ 100(1–2):125–176.
Jonsson, A. 2007. The role of macros in tractable
planning over causal graphs. In IJCAI, 1936–1941.
Katz, M., and Domshlak, C. 2007. Structural patterns
of tractable sequentially-optimal planning. In ICAPS.
Pearl, J. 1984. Heuristics — Intelligent Search Strate-
gies for Computer Problem Solving. Addison-Wesley.

8

