
Structural Patterns of Tractable Sequentially-Optimal Planning

Michael Katz and Carmel Domshlak
Faculty of Industrial Engineering and Management

Technion—Israel Institute of Technology
Haifa, Israel

Abstract

We study the complexity of sequentially-optimal
classical planning, and discover new problem
classes for whose such optimization is tractable.
The results are based on exploiting numerous
structural characteristics of planning problems,
and a constructive proof technique that connects
between certain tools from planning and tractable
constraint optimization. In particular, we believe
that structure-based tractability results of this kind
may help devising new admissible search heuris-
tics. We discuss the prospects of this direction
along a principled extension of pattern-database
heuristics to “structural patterns” of unlimited di-
mensionality.

Introduction
General planning is known to be computationally
hard (Chapman 1987; Erol, Nau, & Subrahmanian
1995), and even propositional planning is PSPACE-
complete (Bylander 1994). However, computational
tractability remains a fundamental issue in automated
problem solving, and the reason for that is twofold.
First, many planning problems in the manufacturing
and process industry are believed to be highly struc-
tured, allowing for efficient planning if exploiting this
structure (Williams & Nayak 1997; Klein, Jonsson,
& Bäckström 1998). Second, tractable subclasses of
planning underly some of the most influential heuris-
tics that have been suggested for planning via direc-
tional search (Bonet & Geffner 2001; Hoffmann &
Nebel 2001; Refanidis & Vlahavas 2001; Haslum &
Geffner 2000). Unfortunately, this far the palette of
tractable planning remains extremely limited, and the
situation is even more severe for tractable optimal plan-
ning. To date, less than a handful of non-trivial frag-
ments of optimal planning problems are known to be
tractable (Bäckström & Klein 1991; Bylander 1994;
Jonsson & Bäckström 1998; Brafman & Domshlak

Copyright c© 2007, American Association for Artificial Intel-
ligence (www.aaai.org). All rights reserved.

2006; Jonsson 2007), and this across numerous notions
of optimality that have been considered useful.

We believe that extending the toolbox of tractable op-
timal planning is critically important as it may allow
us, for instance, extending the (still extremely limited)
palette of admissible heuristics for planning as search.
In this work we study the complexity of sequentially-
optimal planning within the UB fragment of classical
planning problems. Specifically, UB is a fragment of
the SAS+ formalism (Bäckström & Nebel 1995) that
corresponds to problems with binary-valued state vari-
ables and unary-effect actions. The notion of sequen-
tial optimality is based on probably the most canon-
ical plan quality measure that sums up the individ-
ual costs of the plan’s actions. In general, even non-
optimal planning for UB is PSPACE-complete, that
is, as hard as general classical planning (Bylander
1994). Moreover, only a handful of UB sub-fragments
are known to be tractable (Bäckström & Klein 1991;
Williams & Nayak 1997; Jonsson & Bäckström 1998;
Brafman & Domshlak 2003), and the sequentially-
optimal planning is tractable only for two such sub-
fragments of UB (Bäckström & Klein 1991; Jonsson &
Bäckström 1998).

Here we study the complexity of sequentially-
optimal planning for UB as a function of

(1) The global structure of the problem’s causal graph.
The special cases we consider here correspond to
trees, inverted trees, singly-connected DAGs (poly-
trees), and directed-path singly-connected DAGs.

(2) The local connectivity of the causal graph. Here
we study the impact (or absence of such) of the
in-degree and/or out-degree of the causal graph’s
nodes being bounded by a constant.

(3) The k-dependence property of the problem’s ac-
tions. This property has a close connection to the
problem’s causal graph, but is not expressed by the
latter. In some sense, this property refers to a cer-
tain local structure of the problem’s actions with
respect to the causal graph.

Considering the interplay between the three parame-
ters above, we discover novel tractable sub-fragments of
UB, and in particular, of the sequentially-optimal plan-
ning for UB. For some of these fragments, we show
that relaxing their specification along any of the three
dimensions leads to an NP-hard class of problem. Our
tractability results are based (each in a different man-
ner) on a proof technique that connects between certain
tools from planning and tractable constraint optimiza-
tion. This technique appears to be rather robust, sug-
gesting that further investigation in this direction is very
promising.

While discovering islands of tractability in the sea of
(optimal) planning is of theoretical interest on its own,
we believe that structurally-characterized tractable
fragments of problems (such as presented here), have a
potential to help devising new admissible search heuris-
tics. In the last part of the paper we discuss the
prospects of this direction along a principled extension
of the pattern-database heuristics (Culberson & Schaef-
fer 1998; Edelkamp 2001) to “structural patterns” that
alleviate the requirement for patterns to be of a low (up
to poly-logarithmic) dimensionality (Katz & Domshlak
2007).

Formalism and Notation
Problems of classical planning correspond to reacha-
bility analysis in state models with deterministic ac-
tions and complete information. In this work we fo-
cus on state models corresponding to a fragment of the
SAS+ formalism (Bäckström & Nebel 1995) that cap-
tures problem with binary state variables and unary-
effect actions. Following (Bäckström & Klein 1991),
in what follows we refer to this subclass of SAS+ as
UB. Considering the applicability of actions, in SAS+

it helps to distinguish between pre-conditions and pre-
vail conditions of the actions. The former are required
values of variables that are affected by the action. The
latter are required values of variables that are not af-
fected by the action. The post-conditions of an action
describe the new values taken by its precondition vari-
ables after the action execution. For example, having
truck T and package P in location L are a prevail and a
pre-condition for loading P into T in L, respectively—
both conditions are essential, but, after performing the
action, the truck is still in L, while the package is no
longer there (but inside T).

Definition 1 A UB problem instance is given by a
quadruple Π = 〈V, A, I,G〉, where:

• V = {v1, . . . , vn} is a set of state variables over
binary domains Dom(vi). The domain Dom(vi)
of vi induces an extended domain Dom+(vi) =
Dom(vi) ∪ {u}, where u denotes the dummy value:
unspecified.

• I is a fully specified initial state, that is, I ∈
×Dom(vi). By I[i] we denote the value of vi in I .

• G ∈ ×Dom+(vi) is a partial assignment to V , spec-
ifying the set of alternative goal states. By G[i] we
denote the value provided by G to vi (with, possibly,
G[i] = u.)

• A = {a1, . . . , aN} is a finite set of actions. Each
action a is a triplet 〈pre(a), post(a), prv(a)〉, where
pre(a), post(a), prv(a) ⊆ ×Dom+(vi) denote the
pre-, post-, and prevail conditions of a, respectively.
By pre(a)[i], post(a)[i], and prv(a)[i] we denote the
corresponding values of vi.

• All actions A are unary-effect, that is, for each a ∈
A, there is exactly one variable vi ∈ V such that
post(a)[i] 6= u. Likewise, for every vi ∈ V , we have
– either pre(a)[i] = u or prv(a)[i] = u, and
– post(a)[i] 6= u if and only if pre(a)[i] 6= u, in

which case post(a)[i] 6= pre(a)[i].
By Av ⊆ A we denote the actions changing the value
of v, and from unary-effectness we have Av∩Av′ = ∅
if v 6= v′.

In this work we focus on sequentially-optimal plan-
ning (SO-planning, for short) in which, for every ρ ∈
A∗, we have cost(s0, ρ) =

∑
a∈ρ cost(a) if ρ is a plan

for Π, and cost(s0, ρ) = ∞ otherwise. The (possibly
non-uniform) costs of actions in A are assumed to be all
non-negative.

Following (Brafman & Domshlak 2003), here we
relate between the complexity of UB planning and
the causal graph structure (Bacchus & Yang 1994;
Knoblock 1994; Williams & Nayak 1997; Brafman &
Domshlak 2003; Domshlak & Dinitz 2001; Helmert
2006; Brafman & Domshlak 2006; Jonsson 2007).

Definition 2 The causal graph CGΠ of a UB problem
Π = 〈V, A, I,G〉 is a digraph over the nodes V . An
edge (−−−→vi, vj) appears in CGΠ if (and only if) some ac-
tion a ∈ A changes the value of vj while having a
prevail condition involving some value of vi, that is,
post(a)[j] 6= u ∧ prv(a)[i] 6= u.

For each node v ∈ CGΠ, by In(v) and Out(v)
we denote the in- and out-degrees of v, respectively,
and In(CGΠ)/Out(CGΠ) stand for the maximal in-
degree/out-degree of the CGΠ nodes. Assuming CGΠ

is connected, in what follows we give a special atten-
tion to the following acyclic cases of the causal graph’s
structure. A causal CGΠ is a

T tree if In(CGΠ) ≤ 1, and there exists v ∈ V such
that In(v) = 0.

I inverted tree if Out(CGΠ) ≤ 1, and there exists v ∈
V such that Out(v) = 0.

P polytree if CGΠ contains no undirected cycles.

2

S directed-path singly connected if there is at most one
directed path from each node v ∈ CGΠ to any other
node v′ ∈ CGΠ.

In what follows, we use T, I, P, and S to refer to
the corresponding fragments of UB, and we use sub-
script/superscript b to refer to a fragment induced by
the additional constraint of in-degree/out-degree being
bounded by a constant. It is not hard to verify that we
have T, I ⊂ P ⊂ S, with T ⊂ Pb and I ⊂ Pb.

Causal Graph and Bounded Connectivity
The complexity of UB planning as a function of the
causal graphs structure has been first studied in (Braf-
man & Domshlak 2003), where it was shown that non-
optimal planning is tractable for Pb and NP-complete1

for Sb. The gap left in (Brafman & Domshlak 2003)
has been recently closed in (Giménez 2006) where it
was shown that planning for P is NP-complete, and the
proof of this result actually carries out to the I frag-
ment as well. In addition, since out-degree of the causal
graph in I is ≤ 1, the result in (Giménez 2006) immedi-
ately implies that bounding out-degree of the nodes can
possibly lead to tractability only in case of Pb

b, or one
of its sub-fragments.

Considering only the structure of the causal graph
and its local connectivity, all the above leaves us with
Pb still being a candidate for tractable SO-planning.
Our first positive result below affirms this possibility.

Theorem 1 SO-planning for Pb is tractable.

The proof of Theorem 1 is constructive, and our algo-
rithm for SO-planning for Pb is based on compiling a
Pb problem Π into a constraint optimization problem
COPΠ = (X ,F) over variables X , functional com-
ponents F , and the global objective min

∑
ϕ∈F ϕ(X)

such that
(i) the description size of COPΠ is polynomial in the

description size of Π,
(ii) the tree-width of the cost network of COPΠ is

bounded by a constant,
(iii) if Π is unsolvable then all the assignments to X

evaluate the objective function to ∞, and other-
wise, the optimum of the global objective is ob-
tained on and only on the assignments to X that
correspond to SO-plans for Π,

(iv) given an optimal solution to COPΠ, the corre-
sponding SO-plan for Π can be reconstructed from
the former in polynomial time.

Having such a compilation scheme, we then can solve
COPΠ using the standard, poly-time algorithm for con-
straint optimization over trees (Dechter 2003), and find

1The result in (Brafman & Domshlak 2003) is stated for
S, but its proof can easily be rephrased to hold for Sb.

an optimal solution for Π. Here we reuse some data
structures suggested in (Brafman & Domshlak 2003)
for non-optimal planning for Pb, but exploit them in
a very much different manner. Likewise, useful for us
Corollary 1 below follows from Lemma 1 in (Brafman
& Domshlak 2003).

Corollary 1 For any solvable problem Π ∈ S over n
state variables, any SO-plan ρ for Π, and any state vari-
able v in Π, the number of value changes of v along ρ
is ≤ n.

We begin with providing some helpful notation that
refers to the components of a given UB problem Π =
〈V, A, I,G〉. First, for each variable v ∈ V , we denote
the initial value I[v] of v by bv , and the opposite value
by wv . Using this notation and Corollary 1, by

σ(v) =
{

b1
v · w1

v · b2
v · · · bj+1

v , n = 2j,

b1
v · w1

v · b2
v · · ·wj

v, n = 2j − 1,
, j ∈ N

we denote the maximally possible, locally time-
stamped sequence of values of v along an optimal plan
ρ. Next, for each variable v, by �[v] we denote the set
of all non-empty prefixes of σ(v). A prefix σ′ ∈ �[v] is
called valid if the last element of σ′ is compatible with
G[v], that is, equals G[v] if G[v] 6= u. The subset of all
valid prefixes of σ(v) is denoted by �∗[v] ⊆ �[v].

We now proceed with specifying the constraint opti-
mization problem COPΠ.

1. The variable set X contains a variable xv for each
planning variable v ∈ V , and the domain Dom(xv)
consists of all valid prefixes of σ(v). That is,

X = {xv | v ∈ V}, Dom(xv) = �∗[v] (1)

2. For each planning variable v with parents pred(v) =
{w1, . . . , wk}, the set F contains a non-negative,
real-valued function ϕv with the scope

Qv = {xv, xw1 , . . . , xwk
} (2)

The more involved part is specifying the function
set F . In what follows, we assume that, for each
v ∈ V , each a ∈ Av , and each w ∈ pred(v), we have
prv(a)[w] 6= u. (In case of Pb, this assumption causes
neither loss of generality nor a complexity blow up.)
First, for each planning variable v with pred(v) = ∅,
and for each σ′ ∈ �∗[v], we set

ϕv(σ′) =
⌊
|σ′|
2

⌋
·C(awv

) +
⌊
|σ′| − 1

2

⌋
·C(abv

) (3)

where post(awv) = {wv}, post(abv) = bv , and
C(a) = cost(a) if a ∈ A, and ∞, otherwise. It is
easy to verify that ϕv(σ′) corresponds to the optimal
cost of performing |σ′| − 1 value changes of v in Π.

Next we proceed with specifying the function ϕv for
a variable v with pred(v) = {w1, . . . , wk}, k ≥ 1. For

3

v1

!!CCC
C v2

��

v3

}}{{{
{

v4

}}{{{
{

!!CCC
C v5

��
v7 v6

xv1

GGG
G

xv2 xv3

www
w

xv4

www
w GGG

G
xv5

xv7 xv6

Figure 1: Causal graph of a planning problem Π ∈ Pb

(left), and the cost network of COPΠ (right).

each valid prefix σ′ ∈ �∗[v], and each set of valid
prefixes σ′

1 ∈ �∗[w1], . . . , σ′
k ∈ �∗[wk], we want

to set ϕv(σ′, σ′
1, . . . , σ

′
k) to the optimal cost of per-

forming |σ′| − 1 value changes of v in Π, given that
w1, . . . , wk change their values |σ′

1| − 1, . . . , |σ′
k| − 1

times, respectively. In what follows, we reduce deter-
mining ϕv(σ′, σ′

1, . . . , σ
′
k) to solving a single-source

shortest path problem on a weighted directed graph
G′

e(v) that extends a similarly-named graphical struc-
ture suggested in (Brafman & Domshlak 2003).

Given σ′
1, . . . , σ

′
k as above, the digraph G′

e(v) is cre-
ated in three steps. First, we construct a digraph G(v) =
(V,E), nodes of which stand for the elements of σ(v),
and, for each action a ∈ Av , if post(a)[v] = wv ,
then, for each pair of nodes bi

v,wi
v , the edge set E con-

tains an edge e from bi
v to wi

v , labeled with a pair label
l(e) = ‖prv(a), cost(a)‖. Otherwise, if post(a)[v] =
bv , then E contains similar edges for each pair of nodes
wi

v, bi+1
v , mutatis mutandis. The prv and cost parts of

l(e) are denoted by prv(e) and cost(e), respectively.
Next, the digraph G(v) is expanded into a digraph

G′(v) = (V ′, E′) by substituting each edge e ∈
E with a set of edges (between the same nodes),
labeled with all possible assignments of the time-
stamped elements of σ′

1, . . . , σ
′
k to prv(e). For ex-

ample, an edge e ∈ E labeled with ‖bw1bw2 , 10‖
might be substituted in E′ with edges labeled with
{‖b1

w1
b1

w2
, 10‖, ‖b1

w1
b2

w2
, 10‖, ‖b2

w1
b1

w2
, 10‖, . . . }. Fi-

nally, we set V ′ = V ∪ {sv, tv}, and add a single
edge labeled with the first elements of σ′

1, . . . , σ
′
k and

zero cost (i.e., ‖b1
w1
· · · b1

wk
, 0‖) from sv to the (original

source) node b1
v , plus a single edge labeled with the last

elements of σ′
1, . . . , σ

′
k and zero cost from the (original

sink) node of G(v) to tv .
Informally, the digraph G′(v) can be viewed as a pro-

jection of the prefixes σ′
1, . . . , σ

′
k on the base digraph

G(v). The digraph G′
e(v) = (V ′

e , E′
e) is then con-

structed from G′(v) as follows. The nodes V ′
e corre-

spond to the edges of G′(v). The edges (−−−→ve, ve′) ∈
E′

e correspond to all pairs of immediately consecutive
edges e, e′ ∈ E′ such that, for 1 ≤ i ≤ k, either
prv(e)[wi] = prv(e′)[wi], or prv(e′)[wi] appears after
prv(e)[wi] on σ′

i. Finally, each edge (−−−→ve, ve′) ∈ E′
e is

weighted with cost(e′).
The graph G′

e(v) provides the last building block for
the algorithm depicted in Figure 2. Given a problem
Π ∈ Pb, the algorithm compiles it into the constraint

procedure polytree-k-indegree(Π = (V, A, I, G))
create variables X as in Eq. 1
create functions F = {ϕv | v ∈ V} with scopes as in Eq. 2
for each v ∈ V do

if pred(v) = ∅ then specify ϕv according to Eq. 3
elseif pred(v) = {w1, . . . , wk} then

construct G(v) (based on I[v], G[v], and Av)
for each {σ′

1 ∈ �∗[w1], . . . , σ
′
k ∈ �∗[wk]} do

construct G′(v) (from on G(v), and σ′
1, . . . , σ

′
k)

construct G′
e(v) (from G′(v))

for each σ′ ∈ �∗[v] do
π := minimal-cost path of |σ′| − 1 edges

from the source node 〈bw1 · · · bwk 〉 of G′
e(v)

if returned π
then ϕv(σ′, σ′

1, . . . , σ
′
k) := cost(π)

else ϕv(σ′, σ′
1, . . . , σ

′
k) := ∞

set COPΠ := (X ,F) with global objective min
P

ϕ∈F ϕ(X)
x := solve-tree-cop(COPΠ)
if

P
ϕ∈F ϕ(x) = ∞ then return failure

return extract-plan-polytree-k-indegree(x)

Figure 2: Sequentially optimal planning for Pb.

optimization problem COPΠ. It is not hard to verify
from the definition of Pb and Eqs. 1-2 that (i) for each
variable x ∈ X , |Dom(x)| = n + 1, and (ii) the tree-
width of the cost network of COPΠ is bounded by a
constant. (Figure 1 illustrates the polytree causal graph
of a Π ∈ Pb, and the cost network of the corresponding
COPΠ; the top-most variables and the maximal cliques
in the latter correspond to the functional components of
COPΠ.) Given that, COPΠ can be solved in poly-time
using the well-known algorithm for constraint optimiza-
tion over trees (Dechter 2003). Lemma 1 (proof omit-
ted) addresses the correctness and complexity of this
construction, and thus accomplishes the proof of The-
orem 1.

Lemma 1 Given a planning problem Π ∈ Pb, (i)
COPΠ can be constructed in poly-time, and (ii) given a
solution x for COPΠ with

∑
ϕ∈F ϕ(x) = α, if α = ∞,

then Π is unsolvable, and otherwise, a plan of cost α
for Π can be reconstructed from x in poly-time.

The algorithm for Pb in Figure 2 is polynomial, but
is rather involved and its complexity is exponential in
poly(In(CGΠ)). It is quite possible that more efficient
algorithms for Pb, or, definitely, for some of its frag-
ments can be devised. For instance, it can already be
shown that, for T problems with uniform-cost actions,
there exists a simple and efficient SO-planning algo-
rithm, and its complexity is given in Theorem 2.

Theorem 2 SO-planning for T with uniform-cost ac-
tions can be done in time Θ(|V|2).

4

Causal Graph and Local Structure
The causal graphs provide important information about
the structure of the planning problems, but obviously
not all the important such information. In fact, a closer
look at Definition 2 reveals that some information used
for defining causal graphs then gets hidden by this
structure. To start with an example, let us consider
the multi-valued encoding of the Logistics-style prob-
lems (Helmert 2006). In these problems, each variable
representing the location of a package has as its parents
in CG all the variables representing alternative trans-
portation means (i.e., tracks, planes, etc.), and yet, each
individual action affecting the location of a package is
prevailed by at most one such parent variable. (You can-
not load/unload a package into/from more than one ve-
hicle.) In short, even when In(CG) is Θ(n), the number
of v’s parents that actively determine applicability of an
action from Av may still be bounded by a constant. This
stresses the fact that causal graph provides an aggrega-
tive view on variable independence, and local structure
information is suppressed by this view.

In what follows, we consider the impact of such lo-
cal structure on the complexity of SO-planning for our
structural fragments UB. Given a UB problem Π =
(V, A, I,G), let the dependence bound of Π be given
by dbΠ = maxa∈A |{v ∈ V | prv(a)[v] 6= u}|. For any
problem Π, and any k, if dbΠ ≤ k, we say that Π sat-
isfies the property of k-dependence. For any fragment
F of UB and any k ∈ N, by F(k) we denote the sub-
fragment of F satisfying k-dependence.

Recall that the fragment P of UB is NP-hard even for
non-optimal planning (Giménez 2006). Our main result
here is positive—at least for the most extreme (yet, says
the example above, practically useful) setting of k = 1,
satisfying k-dependence does bring us to an island of
tractability P(1).

Theorem 3 SO-planning for P(1) with uniform-cost
actions (and thus, planning for general P(1)) are
tractable.

Similarly to the polytree-k-indegree algorithm for
Pb, our algorithm for P(1) exploits the idea of com-
piling a planning problem Π into a tractable constraint
optimization problem COPΠ. However, the planning-
to-COP compilation here is very much different from
this for Pb. In fact, this difference is unavoidable since
the construction in polytree-k-indegree heavily relies on
the fact that In(CGΠ) = O(1), and we do not have this
property in P(1).

Here as well, we begin with providing some nota-
tion. Given a P(1) problem Π = (V, A, I,G), for each
v ∈ V , each w ∈ pred(v), and each α ∈ {bv,wv},
β ∈ {bw,ww}, by aα|β we denote the action a with
post(a)[v] = α and prv(a)[w] = β. Since Π is 1-
dependent, this implies that a is prevailed by the value

of w only. (Note that aα|β may not belong to the action
set A of Π.)

The proof of Theorem 3 is based on a certain prop-
erty of the P(1) problems with respect to the notion of
conservative action sequences given by Definition 3.

Definition 3 Let Π = (V, A, I,G) be an UB(1) prob-
lem instance. An action sequence % from A is called
conservative if, for each pair of actions aα|β , aα|γ ∈ %,
we have β = γ, and thus aα|β = aα|γ . That is, all
the changes of each variable to a certain value are per-
formed by the same action.

Given that, the (possibly empty) set of all conserva-
tive plans Π is denoted by Pc(Π).

The property of conservatism is clearly strong, and
thus, in general, solvable problems in UB(1) may not
have conservative plans at all. Lemma 2, however,
states that this is very much not the case for P(1).

Lemma 2 For every solvable P(1) problem Π =
(V, A, I,G), we have Pc(Π) 6= ∅. Moreover, if Π
is uniform-cost, then Pc(Π) contains at least one SO-
plan.

The impact of Lemma 2 on our construction for
uniform-cost P(1) below is that we can now restrict
our attention to conservative plans only. Given that, the
constraint optimization problem COPΠ = (X ,F) for
a uniform-cost problem Π = (V, A, I,G) ∈ P(1) is
specified as follows.

The variable set X contains a variable xv for each
planning variable v ∈ V , and a variable xw

v for each
edge (−−→w, v) ∈ CGΠ. That is,

X = XV ∪ X E , XV = {xv | v ∈ V}
X E = {xw

v | (−−→w, v) ∈ CGΠ}
(5)

For each variable xv ∈ XV , the domain Dom(xv)
consists of all valid prefixes of σ(v). For each variable
xw

v ∈ X E , the domain Dom(xw
v) consists of all triples

of integers Jδw
wv

, δw
bv

, nw
v K satisfying Eq. 6.

Dom(xv) = �∗[v]

Dom(xw
v) =


Jδw

wv
, δw

bv
, nw

v K
˛̨̨̨

0 ≤ nw
v ≤ n

δw
wv

, δw
bv
∈ {0, 1}

ff
(6)

The semantics of Eq. 6 is as follows. Let {w1, . . . , wk}
be an arbitrary fixed ordering of pred(v). If xv takes
the value σv ∈ Dom(xv), then v is forced to provide
σv sequence of values. In turn, if xwi

v takes the value
Jδwi

wv
, δwi

bv
, nwi

v K, then nwi
v corresponds to the number of

value changes of v, δwi
wv

= 1 (δwi

bv
= 1) forces the par-

ents {w1, . . . , wi} ⊆ pred(v) to support all the changes
of v to wv (respectively, to bv), and δwi

wv
= 0 (δwi

bv
= 0)

relieves the parents {w1, . . . , wi} from this responsibil-
ity.

5

ϕ(Jδw
wv

, δw
bv

, nw
v K, σw) =

8>>>>>>>>><>>>>>>>>>:

0, δw
wv

= 0, δw
bv

= 0,

0, δw
wv

= 1, δw
bv

= 0, (awv|bw ∈ Av) ∨ ((|σw| > 1) ∧ (awv|ww ∈ Av)),

0, δw
wv

= 0, δw
bv

= 1, (abv|bw ∈ Av) ∨ ((|σw| > 1) ∧ (abv|ww ∈ Av)),

0, δw
wv

= 1, δw
bv

= 1, (awv|bw , abv|bw ∈ Av) ∨ ((|σw| > 1) ∧ (awv|ww , abv|ww ∈ Av)),

0, δw
wv

= 1, δw
bv

= 1, |σw| ≥ nw
v , awv|bw , abv|ww ∈ Av,

0, δw
wv

= 1, δw
bv

= 1, |σw| > nw
v , awv|ww , abv|bw ∈ Av,

∞, otherwise

(4)

For each variable x ∈ X , the set F contains a non-
negative, real-valued function ϕx with the scope

Qx =

8>>><>>>:
{xv}, x = xv, k = 0

{xv, x
wk
v }, x = xv, k > 0

{xw1
v , xw1}, x = xw1

v , k > 0

{xwj
v , x

wj−1
v , xwj}, x = x

wj
v , 1 < j ≤ k

(7)

where pred(v) = {w1, . . . , wk} (and k = 0 means
pred(v) = ∅). Proceeding now with specifying the
functional components F of COPΠ, first, for each xv

with pred(v) = ∅, and for each σv ∈ �∗[v], we set
ϕxv (σv) to

ϕxv (σv) =

8>>><>>>:
0, |σv| = 1,

1, (|σv| = 2) ∧ (awv ∈ Av),

|σv| − 1, (|σv| > 2) ∧ (awv , abv ∈ Av),

∞, otherwise
(8)

In turn, for each planning variable v ∈ V with
pred(v) = {w1, . . . , wk}, k > 0, the function ϕxv

is
set to

ϕxv (σv, Jδwk
wv

, δ
wk
bv

, nwk
v K) =8>>><>>>:

0, (|σv| = 1) ∧ (Jδwk
wv , δ

wk
bv

, n
wk
v K = J0, 0, 0K),

1, (|σv| = 2) ∧ (Jδwk
wv , δ

wk
bv

, n
wk
v K = J1, 0, 1K),

|σv| − 1, (|σv| > 2) ∧ (Jδwk
wv , δ

wk
bv

, n
wk
v K = J1, 1, |σv| − 1K),

∞, otherwise

(9)

The functions ϕxv
capture the, marginal over the ac-

tions Av , cost of providing a sequence σv of value
changes of v in Π, given that (in case of Eq. 9) the par-
ents of v are “ready to support these value changes”.

In specifying the remaining functional components
we use an “indicator” function ϕ specified in Eq. 4.
The semantics of ϕ is that, for each v ∈ V , each w ∈
pred(v), and each (Jδw

wv
, δw

bv
, nw

v K, σw) ∈ Dom(xw
v) ×

Dom(xw), we have ϕ(Jδw
wv

, δw
bv

, nw
v K, σw) = 0 if the

value sequence σw of w can support all the changes of
v to wv (if δw

wv
= 1) and all the changes of v to bv (if δw

bv

= 1), out of nw
v value changes of v in Π.

Given the indicator function ϕ, for each v ∈ V , the
functional component ϕx

w1
v

is specified as

ϕx
w1
v

(Jδw1
wv

, δw1
bv

, nw1
v K, σw1) = ϕ(Jδw1

wv
, δw1

bv
, nw1

v K, σw1),
(10)

and the rest of the functional components
ϕx

w2
v

, . . . , ϕx
wk
v

are specified as

ϕ
x

wj
v

(Jδwj
wv , δ

wj

bv
, n

wj
v K, Jδwj−1

wv , δ
wj−1
bv

, n
wj−1
v K, σwj) =8>>><>>>:

ϕ(Jδwj
wv − δ

wj−1
wv , δ

wj

bv
− δ

wj−1
bv

, n
wj
v K, σwj), n

wj
v = n

wj−1
v ,

δ
wj
wv ≥ δ

wj−1
wv ,

δ
wj

bv
≥ δ

wj−1
bv

,

∞ otherwise

(11)

This finalized the construction of COPΠ, and this
construction constitutes the first two steps of the al-
gorithm polytree-1-dep in Figure 3(a). The subse-
quent steps of this algorithm are conceptually similar to
these of the polytree-k-indegree algorithm, with the ma-
jor difference being in the plan reconstruction routines
(omitted here). It is not hard to verify from Eqs. 5-7,
and the fact that the causal graph of Π ∈ P(1) forms a
polytree that (i) for each variable x ∈ X , |Dom(x)| =
poly(n), and (ii) the tree-width of the cost network ofF
is ≤ 3. Figure 3(b-c) depicts the causal graph of a prob-
lem Π ∈ P(1), and the cost network of the correspond-
ing COPΠ; here as well, the top-most variables and the
cliques in the cost network correspond to the functional
components of COPΠ. Lemma 3 (proof omitted) pro-
vides the central part of the proof of Theorem 3.

Lemma 3 Given a planning problem Π ∈ P(1) with
uniform-cost actions, (i) COPΠ can be constructed in
poly-time, and (ii) given a solution x for COPΠ with∑

ϕ∈F ϕ(x) = α, if α = ∞, then Π is unsolvable, and
otherwise, a plan of cost α for Π can be reconstructed
from x in poly-time.

Finally, one may ask whether 1-dependence is not
a strong enough property to make the SO-planning
tractable even for some more complex than polytree
forms of the causal graph. Theorem 4, however, pro-
vides a negative answer to this question.

Theorem 4 Sequentially optimal planning for Sb
b(1)

with uniform-cost actions is NP-complete.

6

procedure polytree-1-dep(Π = (V, A, I, G))
create variables X as in Eqs. 5-6
create functions F = {ϕx | x ∈ X} with scopes as in Eq. 7
for each x ∈ X do set ϕx according to Eqs. 8-11
set COPΠ := (X ,F) with global objective min

P
ϕ∈F ϕ(X)

x := solve-tree-cop(COPΠ)
if

P
ϕ∈F ϕ(x) = ∞ then return failure

return extract-plan-polytree-1-dep(x)

(a)
v1

��0
00

00
00

00
v2

��

v3

����
��
��
��
�

v4

����
��
��
��
�

��0
00

00
00

00
v5

��
v7 v6

xv1 xv2

yyy
y

xv3

yyy
y

xv1
v4

xv2
v4

xv3
v4

xv4

yyy
y

xv5

yyy
y

xv4
v7

xv4
v6

xv5
v6

xv7 xv6

(b) (c)

Figure 3: (a) SO-planning for P(1); (b) Causal graph of
a planning problem Π ∈ P(1), and (c) the cost network
of COPΠ (right).

The proof of Theorem 4 is by a polynomial reduction
from the well-known Minimal Vertex Cover problem.

From PDBs to Structural Patterns?
The tractability results in general are of theoretical in-
terest on their own because they shed light on what
makes and what does not make problems hard for plan-
ning and for plan optimization. However, we also be-
lieve that structurally-characterized tractable fragments
of optimal planning can be operationalized in devising
new admissible search heuristics. Here we discuss the
prospects of this direction in the scope of extending
the pattern-database heuristics (Culberson & Schaeffer
1998; Edelkamp 2001) to “structural patterns” of un-
limited dimensionality.

A heuristic is admissible if it never overestimates
the true cost of reaching the nearest goal state. Most
often, an admissible heuristic for planning is derived
from the optimal cost of achieving the goals in an over-
approximating abstraction of the planning problem in
hand. One type of abstractions, homomorphisms, sim-
plify the original problem by systematically contracting
groups of states to single states. Most typically, a such
state gluing is obtained by projecting the original prob-
lem onto a subset of its parameters, as if ignoring the
constraints that fall outside the projection.

In planning, homomorphisms have been success-
fully explored in the scope of domain-independent pat-
tern database (PDB) heuristics (Culberson & Schaef-
fer 1998; Edelkamp 2001; 2002). In short, given a

SAS+ problem Π = 〈V, A, I,G〉, each subset of vari-
ables V ′ ⊆ V defines a pattern abstraction Π[V′] =
〈V ′, A[V′], I [V′], G[V′]〉 by intersecting the initial state,
the goal, and all the actions’ pre, prevail and post con-
dition lists with V ′ (Edelkamp 2001). The idea behind
the PDB heuristics is elegantly simple. First, we select
a (relatively small) set of subsets V1, . . . ,Vk of V such
that, for 1 ≤ i ≤ k,
(a) Π[Vi] is an over-approximating abstraction of Π,
(b) the size of Vi is sufficiently small to perform reach-

ability analysis in Π[Vi] by an (either explicit or
symbolic) exhaustive search.

Let h[Vi](s) be the optimal cost of achieving the ab-
stract goal G[Vi] from the abstract state s[Vi]. To ob-
tain an admissible heuristic, if the set of abstract prob-
lems Π[V1], . . . ,Π[Vk] satisfy certain requirements of
disjointness (Felner, Korf, & Hanan 2004; Edelkamp
2001), the PDB heuristic can be set to h(s) =∑k

i=1 h[Vi](s). Otherwise, one can set h(s) =
maxk

i=1 h[Vi](s) (Holte et al. 2006).
The Achilles heel of the PDB heuristics is that each

pattern (that is, each selected subset of variables Vi)
is required to be small so that reachability analysis in
Π[Vi] could be done by exhaustive search. In short,
computing h[Vi](s) in polynomial time requires satis-
fying |Vi| = O(poly(log |V|)). Note that this con-
straint implies an inherent scalability limitation of the
PDB heuristics—as the problems of interest grow, limit-
ing patterns to poly-logarithmic dimensionality will un-
avoidably make them less and less informative with re-
spect to the original problems.

One can notice, however, that this is not necessarily
the only way to proceed. In principle, given a SAS+

problem Π = 〈V, A, I,G〉, one can select a (relatively
small) set of subsets V1, . . . ,Vk of V such that, for 1 ≤
i ≤ k,
(a) Π[Vi] is an over-approximating abstraction of Π,

(b) the reachability analysis in Π[Vi] is tractable (not
necessarily due to the size of but) due to the specific
structure of Π[Vi]

What is important here is that the second requirement
can in principle be satisfied even if the size of each se-
lected pattern Vi is Θ(|V|).

A priori, this generalization of the PDB heuristics
idea to structural patterns is appealing as it allows us-
ing patterns of unlimited dimensionality. The pitfall,
however, is that such structural patterns correspond ex-
actly to tractable fragments of optimal planning, and, as
we already mentioned, the palette of such known frag-
ments is extremely limited. This obstacle on the way to
structural pattern heuristics has been the principal origi-
nal motivation for our work, and we believe that further
research on the optimal planning tractability is required.

7

On the other hand, some preliminary positive evidence
for realizability of the structural patterns heuristics idea
is already abound (Katz & Domshlak 2007).

Summary and Future Work
We have studied the complexity of sequentially-optimal
classical planning with respect to the interplay between
the topology of the problem’s causal graph, and certain
types of local structure of the problems induced by their
action sets. For some problem classes, we showed that
such optimal planning is tractable, and that relaxing the
specification of these classes takes us out to NP-hard
classes of problem. We believe that there is a room for
further extending the palette of tractable optimal plan-
ning, and we plan to continue our research in this di-
rection. In particular, we conjecture that sequentially-
optimal planning for P(1) problems with non-uniform
action costs is tractable as well. Proving that, however,
will require some additional insights into the problem.

Finally, we discussed the prospects of using
structure-based tractability results in the scope of homo-
morphism abstractions for new admissible heuristics for
general planning. We believe that this direction is very
promising, and, obviously, completely open for future
investigation. In particular, in addition to extending the
palette of tractable optimal planning as much as possi-
ble, materializing this idea of structural pattern heuris-
tics will require addressing numerous additional issues
inherited from the PDB framework (e.g., optimizing the
pattern set selection).

Acknowledgments
The authors were partially supported by the C. Wellner
Research Fund.

References
Bacchus, F., and Yang, Q. 1994. Downward refine-
ment and the efficiency of hierarchical problem solv-
ing. AIJ 71(1):43–100.
Bäckström, C., and Klein, I. 1991. Planning in poly-
nomial time: The SAS-PUBS class. Comp. Intell.
7(3):181–197.
Bäckström, C., and Nebel, B. 1995. Complexity re-
sults for SAS+ planning. Comp. Intell. 11(4):625–655.
Bonet, B., and Geffner, H. 2001. Planning as heuristic
search. AIJ 129(1–2):5–33.
Brafman, R. I., and Domshlak, C. 2003. Structure and
complexity of planning with unary operators. JAIR
18:315–349.
Brafman, R. I., and Domshlak, C. 2006. Factored
planning: How, when, and when not. In AAAI, 809–
814.
Bylander, T. 1994. The computational complexity of
propositional STRIPS planning. AIJ 69(1-2):165–204.

Chapman, D. 1987. Planning for conjunctive goals.
AIJ 32(3):333–377.
Culberson, J., and Schaeffer, J. 1998. Pattern
databases. Comp. Intell. 14(4):318–334.
Dechter, R. 2003. Constraint Processing. Morgan
Kaufmann.
Domshlak, C., and Dinitz, Y. 2001. Multi-agent off-
line coordination: Structure and complexity. In ECP,
277–288.
Edelkamp, S. 2001. Planning with pattern databases.
In ECP, 13–34.
Edelkamp, S. 2002. Symbolic pattern databases in
heuristic search planning. In AIPS, 274–293.
Erol, K.; Nau, D. S.; and Subrahmanian, V. S. 1995.
Complexity, decidability and undecidability results for
domain-independent planning. AIJ 76(1–2):75–88.
Felner, A.; Korf, R. E.; and Hanan, S. 2004. Additive
pattern database heuristics. JAIR 22:279–318.
Giménez, O. 2006. Solving planning do-
mains with polytree causal graphs is NP-complete.
arXiv:cs.AI/0610095.
Haslum, P., and Geffner, H. 2000. Admissible heuris-
tics for optimal planning. In ICAPS, 140–149.
Helmert, M. 2006. The Fast Downward planning sys-
tem. JAIR 26:191–246.
Hoffmann, J., and Nebel, B. 2001. The FF planning
system: Fast plan generation through heuristic search.
JAIR 14:253–302.
Holte, R. C.; Felner, A.; Newton, J.; Meshulam, R.;
and Furcy, D. 2006. Maximizing over multiple pat-
tern databases speeds up heuristic search. AIJ 170(16-
17):1123–1136.
Jonsson, P., and Bäckström, C. 1998. State-variable
planning under structural restrictions: Algorithms and
complexity. AIJ 100(1–2):125–176.
Jonsson, A. 2007. The role of macros in tractable
planning over causal graphs. In IJCAI, 1936–1941.
Katz, M., and Domshlak, C. 2007. Structural patterns
heuristics. In ICAPS-07 Workshop on Heuristics for
Domain-independent Planning: Progress, Ideas, Lim-
itations, Challenges.
Klein, I.; Jonsson, P.; and Bäckström, C. 1998. Effi-
cient planning for a miniature assembly line. Artificial
Intelligence in Engineering 13(1):69–81.
Knoblock, C. 1994. Automatically generating abstrac-
tions for planning. AIJ 68(2):243–302.
Refanidis, I., and Vlahavas, I. P. 2001. The GRT plan-
ning system: Backward heuristic construction in for-
ward state-space planning. JAIR 15:115–161.
Williams, B., and Nayak, P. 1997. A reactive planner
for a model-based executive. In IJCAI, 1178–1185.

8

