
Pushing the Limits of Partial Delete Relaxation: Red-Black DAG Heuristics

Michael Katz
IBM Haifa Research Labs

Haifa, Israel
katzm@il.ibm.com

Jörg Hoffmann
Saarland University

Saarbrücken, Germany
hoffmann@cs.uni-saarland.de

Abstract

Red-black planning is a systematic approach to partial delete
relaxation, taking into account some of the delete effects:
Red variables take the relaxed (value-accumulating) seman-
tics, while black variables take the regular semantics. Prior
work on red-black plan heuristics has identified a powerful
tractable fragment requiring the black causal graph – the
projection of the causal graph onto the black variables – to
be a DAG; but all implementations so far use a much sim-
pler fragment where the black causal graph is required to not
contain any arcs at all. We close that gap here, and we de-
sign techniques aimed at making red-black plans executable,
short-cutting the search. Our experiments show that these
techniques can yield significant improvements on those IPC
benchmarks where non-trivial DAG black causal graphs exist.

Introduction
The delete relaxation, where state variables accumulate their
values rather than switching between them, has played a
key role in the success of satisficing planning systems,
e. g. (Bonet and Geffner 2001; Hoffmann and Nebel 2001;
Richter and Westphal 2010). Still, the delete relaxation
has well-known pitfalls, for example the fundamental in-
ability to account for moves back and forth (as done, e. g.,
by vehicles in transportation). It has thus been an ac-
tively researched question from the outset how to take some
deletes into account, e. g. (Fox and Long 2001; Gerevini,
Saetti, and Serina 2003; Helmert 2004; Helmert and Geffner
2008; Baier and Botea 2009; Cai, Hoffmann, and Helmert
2009; Haslum 2012; Keyder, Hoffmann, and Haslum 2012).
Herein, we continue the most recent attempt, red-black
planning (Katz, Hoffmann, and Domshlak 2013b; 2013a;
Katz and Hoffmann 2013) where a subset of red state vari-
ables takes on the relaxed value-accumulating semantics,
while the other black variables retain the regular semantics.

Katz et al. (2013b) introduced the red-black framework
and conducted a theoretical investigation of tractability. Fol-
lowing up on this (2013a), they devised practical red-black
plan heuristics, non-admissible heuristics generated by re-
pairing fully delete-relaxed plans into red-black plans. Ob-
serving that this technique often suffers from dramatic over-
estimation incurred by following arbitrary decisions taken
in delete-relaxed plans, Katz and Hoffmann (2013) refined
the approach to rely less on such decisions, yielding a more

flexible algorithm delivering better search guidance.
The black causal graph is the projection of the causal

graph onto the black variables only. Both Katz et al.
(2013a) and Katz and Hoffmann (2013) exploit, in theory,
a tractable fragment characterized by DAG black causal
graphs, but confine themselves to arc-empty black causal
graphs – no arcs at all – in practice. Thus current red-
black plan heuristics are based on a simplistic, almost trivial,
tractable fragment of red-black planning. We herein close
that gap, designing red-black DAG heuristics exploiting the
full tractable fragment previously identified. To that end,
we augment Katz and Hoffmann’s implementation with a
DAG-planning algorithm (executed several times within ev-
ery call to the heuristic function). We devise some enhance-
ments targeted at making the resulting red-black plans exe-
cutable in the real task, stopping the search if they succeed in
reaching the goal. In experiments on the relevant IPC bench-
marks, we find that the gained informativity often pays off,
reducing search and improving overall performance.

Background
Our approach is placed in the finite-domain representa-
tion (FDR) framework. To save space, we introduce FDR
and its delete-relaxation as special cases of red-black plan-
ning. A red-black (RB) planning task is a tuple Π =
〈V B, V R, A, I,G〉. V B is a set of black state variables and
V R is a set of red state variables, where V B ∩ V R = ∅ and
each v ∈ V := V B ∪ V R is associated with a finite domain
D(v). The initial state I is a complete assignment to V , the
goal G is a partial assignment to V . Each action a is a pair
〈pre(a), eff(a)〉 of partial assignments to V called precon-
dition and effect. We often refer to (partial) assignments as
sets of facts, i. e., variable-value pairs v = d. For a partial
assignment p, V(p) denotes the subset of V instantiated by
p. For V ′ ⊆ V(p), p[V ′] denotes the value of V ′ in p.

A state s assigns each v ∈ V a non-empty subset
s[v] ⊆ D(v), where |s[v]| = 1 for all v ∈ V B. An ac-
tion a is applicable in state s if pre(a)[v] ∈ s[v] for all
v ∈ V(pre(a)). Applying a in s changes the value of
v ∈ V(eff(a))∩V B to {eff(a)[v]}, and changes the value of
v ∈ V(eff(a))∩V R to s[v]∪{eff(a)[v]}. By sJ〈a1, . . . , ak〉K
we denote the state obtained from sequential application of
a1, . . . , ak. An action sequence 〈a1, . . . , ak〉 is a plan if
G[v] ∈ IJ〈a1, . . . , ak〉K[v] for all v ∈ V(G).

Π is a finite-domain representation (FDR) planning
task if V R = ∅, and is a monotonic finite-domain rep-
resentation (MFDR) planning task if V B = ∅. Plans for
MFDR tasks (i. e., for delete-relaxed tasks) can be generated
in polynomial time. A key part of many satisficing plan-
ning systems is based on exploiting this property for deriv-
ing heuristic estimates, via delete-relaxing the task at hand.
Generalizing this to red-black planning, the red-black re-
laxation of an FDR task Π relative to V R is the RB task
Π∗+V R = 〈V \ V R, V R, A, I,G〉. A plan for Π∗+V R is a red-
black plan for Π, and the length of a shortest possible red-
black plan is denoted h∗+V R(Π). For arbitrary states s, h∗+V R(s)
is defined via the RB task 〈V \V R, V R, A, s,G〉. If V R = V ,
then red-black plans are relaxed plans, and h∗+V R coincides
with the optimal delete relaxation heuristic h+.

T

C DB

F

A

(a) (b)

Figure 1: An example (a), and its causal graph (b).

In Figure 1, truck T needs to transport each package X ∈
{A,B,C,D} to its respective goal location x ∈ {a, b, c, d}.
The truck can only carry one package at a time, encoded
by a Boolean variable F (“free”). A real plan has length
15 (8 loads/unloads, 7 drives), a relaxed plan has length 12
(4 drives suffice as there is no need to drive back). If we
paint (only) T black, then h∗+V R(I) = 15 as desired, but red-
black plans may not be applicable in the real task, because
F is still red so we can load several packages consecutively.
Painting T and F black, that possibility disappears.1

Tractable fragments of red-black planning have been
identified using standard structures. The causal graph CGΠ

of Π is a digraph with vertices V . An arc (v, v′) is in
CGΠ if v 6= v′ and there exists an action a ∈ A such that
(v, v′) ∈ [V(eff(a))∪ V(pre(a))]×V(eff(a)). The domain
transition graph DTGΠ(v) of a variable v ∈ V is a labeled
digraph with vertices D(v). The graph has an arc (d, d′) in-
duced by action a if eff(a)[v] = d′, and either pre(a)[v] = d
or v 6∈ V(pre(a)). The arc is labeled with its outside condi-
tion pre(a)[V \ {v}] and its outside effect eff(a)[V \ {v}].

The black causal graph CGB
Π of Π is the sub-graph of

CGΠ induced by V B. An arc (d, d′) is relaxed side effects
invertible, RSE-invertible for short, if there exists an arc
(d′, d) with outside condition φ′ ⊆ φ∪ψ where φ and ψ are
the outside condition respectively outside effect of (d, d′).
A variable v is RSE-invertible if all arcs in DTGΠ(v) are
RSE-invertible, and an RB task is RSE-invertible if all its
black variables are. Prior work on red-black plan heuristics
proved that plan generation for RSE-invertible RB tasks with
DAG (acyclic) black causal graphs is tractable, but used the

1Indeed, all optimal red-black plans (but not some non-optimal
ones) then are real plans. We will get back to this below: As we
shall see, the ability to increase red-black plan applicability is a
main advantage of our red-black DAG heuristics over the simpler
red-black plan heuristics devised in earlier work.

Algorithm : REDBLACKPLANNING(Π, R+)
main
π ← 〈〉
while R 6⊇ R+

do

8>>><>>>:
A′ = {a ∈ A | pre(a) ⊆ B ∪R, eff(a) ∩ (R+ \R) 6= ∅}
Select a ∈ A′

if pre(a)[V B] 6⊆ IJπK
then π ← π ◦ ACHIEVE(pre(a)[V B])

π ← π ◦ 〈a〉
if G[V B] 6⊆ IJπK

then π ← π ◦ ACHIEVE(G[V B])
return π

procedure ACHIEVE(g)
IB ← IJπK[V B];GB ← g
AB ← {aB | a ∈ A, aB = 〈pre(a)[V B], eff(a)[V B]〉,

pre(a) ⊆ B ∪R}
ΠB ← 〈V B, AB, IB, GB〉
return DAGPLANNING(ΠB)

Figure 2: Katz and Hoffmann’s (2013) red-black planning
algorithm (abbreviated; for explanations see text).

much simpler fragment restricted to arc-empty black causal
graphs in practice. In Figure 1, both T and F are RSE-
invertible; if we paint only T black then the black causal
graph is arc-empty, and if we paint both T and F black then
the black causal graph is (not arc-empty but) a DAG.

Red-Black DAG Heuristics
As indicated, we augment Katz and Hoffmann’s (2013) im-
plementation with a DAG-planning algorithm. To provide
the context, Figure 2 shows (the main parts of) Katz and
Hoffmann’s pseudo-code. The algorithm assumes as in-
put the set R+ of preconditions and goals on red vari-
ables in a fully delete-relaxed plan, i. e., R+ = G[V R] ∪⋃
a∈π+ pre(a)[V R] where π+ is a relaxed plan for Π. It then

successively selects achieving actions for R+, until all these
red facts are true. Throughout the algorithm, R denotes the
set of red facts already achieved by the current red-black
plan prefix π; B denotes the set of black variable values
that can be achieved using only red outside conditions from
R. We have omitted the (simple) maintenance of R and B
here as it is not needed to understand the present paper.

For each action a ∈ A′ selected to achieve new facts from
R+, and for the global goal condition at the end, there may
be black variables that do not have the required values. For
example, say we paint T and F black in Figure 1. Then R+

will have the form {A = T,A = a,B = T,B = b, C =
T,C = c,D = T,D = d}. In the initial state, A′ will
contain only load actions. Say we execute a =load(A, init),
entering A = T into R and thus including unload(A, a) into
A′ in the next iteration. Trying to execute that action, we
find that its black precondition T = a is not satisfied. The
call to ACHIEVE({T = a}) is responsible for rectifying this.

ACHIEVE(g) creates a task ΠB over Π’s black variables,
asking to achieve g. As Katz and Hoffmann showed, ΠB

is solvable, has a DAG causal graph, and has strongly con-
nected DTGs (when restricting to actions a where pre(a) ⊆
IJπK). From this and Theorem 4.4 of Chen and Gimenez
(2010), it directly follows that a plan for ΠB, in a succinct

Algorithm : DAGPLANNING(ΠB)
main
πB ← 〈〉
for i = n downto 1

do

8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:

// Denote πB = 〈a1, . . . , ak〉
d← I[vi]
for j = 1 to k

do

8><>:
πj ← 〈〉
if pre(aj)[vi] is defined

then

πj ← πvi(d, pre(aj)[vi])
d← pre(aj)[vi]

πk+1 ← 〈〉
if G[vi] is defined

then πk+1 ← πvi(d,G[vi])
πB ← π1 · 〈a1〉 · . . . · πk · 〈ak〉 · πk+1

return πB

Figure 3: Planning algorithm for FDR tasks ΠB with
DAG causal graph CGΠB and strongly connected DTGs.
v1, . . . , vn is an ordering of variables V consistent with the
topology of CGΠB . πv(d, d′) denotes an action sequence
constituting a shortest path in DTGv(Π) from d to d′.

plan representation, can be generated in polynomial time.
The “succinct plan representation” just mentioned con-

sists of recursive macro actions for pairs of initial-
value/other-value within each variable’s DTG; it is required
as plans for ΠB may be exponentially long. Chen and
Gimenez’ algorithm handling these macros involves the ex-
haustive enumeration of shortest paths for the mentioned
value pairs in all DTGs, and it returns highly redundant plans
moving precondition variables back to their initial value in
between every two requests. For example, if a truck unloads
two packages at the same location, then it is moved back to
its start location in between the two unload actions.

Katz and Hoffmann (2013) shunned the complexity of
DAG planning, and considered ΠB with arc-empty causal
graphs, solving which is trivial. In our work, after explor-
ing a few options, we decided to use the simple algorithm
in Figure 3: Starting at the leaf variables and working up to
the roots, the partial plan πB is augmented with plan frag-
ments bringing the supporting variables into place (a similar
algorithm was mentioned, but not used, by Helmert (2006)).

Proposition 1 The algorithm DAGPLANNING(ΠB) is
sound and complete, and its runtime is polynomial in the
size of ΠB and the length of the plan πB returned.

Note here that the length of πB is worst-case expo-
nential in the size of ΠB, and so is the runtime of
DAGPLANNING(ΠB). We trade the theoretical worst-case
efficiency of Chen and Gimenez’ algorithm against the prac-
tical advantage of not having to rely on exhaustive compu-
tation of shortest paths – anew for every call of DAGPLAN-
NING, with “initial values” and DTGs from ΠB – for input
tasks ΠB that typically have small plans (achieving the next
action’s black preconditions) anyhow.2

2One could estimate DAG plan length (e. g., using Helmert’s
(2006) causal graph heuristic), computing a red-black plan length
estimate only. But that would forgo the possibility to actually exe-
cute DAG red-black plans, which is a key advantage in practice.

Unlike the macro-based algorithm of Chen and Gimenez,
our DAGPLANNING algorithm does not superfluously keep
switching supporting variables back to their initial values.
But it is not especially clever, either: If variable v0 supports
two otherwise independent leaf variables v1 and v2, then the
sub-plans for v1 and v2 will be inserted sequentially into
πB, losing any potential for synergies in the values of v0 re-
quired. We developed a more flexible algorithm addressing
that weakness through using a partially-ordered πB, but that
algorithm resulted in significantly worse empirical perfor-
mance, so we do not include it here.

Enhancing Red-Black Plan Applicability
One crucial advantage of red-black plans, over fully-delete
relaxed plans, is that they have a much higher chance of ac-
tually working for the original planning task. This is es-
pecially so for the more powerful DAG red-black plans we
generate here. In Figure 1, as already mentioned, if we paint
just T black then the red-black plan might work; but if we
paint both T and F black – moving to a non-trivial DAG
black causal graph – then every optimal red-black plan defi-
nitely works. A simple possibility for exploiting this, already
implemented in Katz and Hoffmann’s (2013) earlier work,
is to stop search if the red-black plan generated for a search
state s is a plan for s in the original task.

There is a catch here, though – the red-black plans we
generate are not optimal and thus are not guaranteed to ex-
ecute in Figure 1. In our experiments, we observed that the
red-black plans often were not executable due to simple rea-
sons. We fixed this by augmenting the algorithms with the
two following applicability enhancements.

(1) Say that, as above, R+ = {A = T,A = a,B =
T,B = b, C = T,C = c,D = T,D = d} and
REDBLACKPLANNING started by selecting load(A, init).
Unload(A, a) might be next, but the algorithm might
just as well select load(B, init). With T and F black,
load(B, init) has the black precondition F = true. Calling
ACHIEVE({F = true}) will obtain that precondition using
unload(A, init). Note here that variableA is red so the detri-
mental side effect is ignored. The same phenomenon may
occur in any domain with renewable resources (like trans-
portation capacity). We tackle it by giving a preference to
actions a ∈ A′ getting whose black preconditions does not
involve deleting R+ facts already achieved beforehand. To
avoid excessive overhead, we approximate this by recording,
in a pre-process, which red facts may be deleted by moving
each black variable, and prefer an action if none of its black
preconditions may incur any such side effects.

(2) Our second enhancement pertains to the DTG paths
chosen for the black precondition variables in DAGPLAN-
NING (after REDBLACKPLANNING has already selected the
next action). The red outside conditions are by design all
reached (contained in R), but we can prefer paths whose red
outside conditions are “active”, i. e., true when executing the
current red-black plan prefix in the real task. (E.g., if a ca-
pacity variable is red, then this will prefer loads/unloads that
use the actual capacity instead of an arbitrary one.) In some
special cases, non-active red outside conditions can be easily
fixed by inserting additional supporting actions.

Coverage Evaluations hFF/Own DLS hFF/DLS Coverage DL Eval hFF/DL
Domain hFF K12 K13 EAS ELS DAS DLS K12 K13 EAS ELS DAS DLS Init Plan Time -S -(1,2) -(2) -S -(1,2) -(2)

Barman 20 17 18 13 20 20 20 20 3.4 1.6 6 67.8 6 67.8 0 0.9 56.8 20 20 20 6 67.8 67.8
Driverlog 20 20 20 20 20 20 20 20 1.3 2 1 1.1 1.1 1 1 1 1 19 20 20 0.9 1 1
Elevators 20 20 18 17 20 18 20 20 1.2 1.5 1.2 1.6 1.5 5920 20 1.1 15.5 18 20 20 1.4 2911 5920
Gripper 20 20 20 20 20 20 20 20 1 0.7 4.2 1 344 344 20 1 1 20 20 20 3.7 344 344
Rovers 29 29 29 29 29 29 29 29 1.1 1.2 1.2 1.2 1.4 1.4 1 1 0.8 29 29 29 1.1 1.4 1.4
Tidybot 20 13 10 16 12 13 12 13 2.2 1.3 1.2 1.1 1.2 1.1 0 1 0.8 12 13 12 1 1.1 1.1
Transport 20 10 10 10 11 11 20 20 0.6 1.2 1 0.9 3.4 3071 20 1.5 8.3 15 16 20 0.8 33.2 3071
Trucks 30 19 15 14 18 18 18 18 0.5 0.9 1.1 1.1 0.5 0.5 0 1 0.5 18 18 18 0.5 0.5 0.5
Sum 179 148 140 139 150 149 159 160 62 151 156 159

Table 1: Experiments results. Ratios: median over instances solved by both planners involved. Explanations see text.

Experiments
The experiments were run on Intel Xeon CPU E5-2660
machines, with time (memory) limits of 30 minutes (2
GB). We ran all IPC STRIPS benchmark instances whose
causal graphs have at least one directed arc (v, v′) between
RSE-invertible variables v and v′, with no backwards arc
(v′, v). These are exactly the tasks for which there exists
a choice of black variables so that (a) the resulting red-
black planning task is inside the tractable fragment, and (b)
the black causal graph is a non-arc-empty DAG. The do-
mains/instances where that happens are as shown in Table 1.
For IPC’08 domains also used in IPC’11, we used only the
IPC’11 version. For simplicity, we consider uniform costs
throughout (i. e., we ignore action costs where specified).

We compare our DAG heuristics against Katz and Hoff-
mann’s (2013) arc-Empty ones, and against two variants
of Keyder et al.’s (2012) partial delete relaxation heuris-
tics: K12 is best in their published experiments, K13 is best
in more recent (yet unpublished) experiments. S stops the
search if a red-black plan works for the original planning
task. Our baseline is the hFF heuristic implemented in Fast
Downward. All configurations run greedy best-first search
with lazy evaluation and a second open list for states re-
sulting from preferred operators (Helmert 2006). All red-
black heuristics return the same preferred operators as hFF:
This enhances comparability; we found that changing the
preferred operators was typically not beneficial anyway.

Katz and Hoffmann explored a variety of painting strate-
gies, i. e., strategies for selecting the black variables. We
kept this simple here because, as we noticed, there actu-
ally is little choice, at least when accepting the rationale that
we should paint black as many variables as possible: In all
our domains except Tidybot, there are at most 2 possible
paintings per task. To illustrate, consider Figure 1: We can
paint T and F black, or paint T and the packages black.
All other paintings either do not yield a DAG black causal
graph, or are not set-inclusion maximal among such paint-
ings. We thus adopted only Katz and Hoffmann’s 3 basic
strategies, ordering the variables either by incident arcs (A),
or by conflicts (C), or by causal graph level (L), and itera-
tively painting variables red until the black causal graph is
a DAG (Katz and Hoffmann’s original strategies continue
until that graph is arc-Empty). A works best for Katz and
Hoffmann’s heuristics (both here and in their experiments),
and L works best for ours, so we show data for these two.

Consider Table 1 from left to right. Our red-black DAG
heuristics have the edge in coverage, thanks to excelling in

Transport and being reliably good across these domains. For
search space size (number of state evaluations, i. e., calls to
the heuristic function), there are smallish differences in half
of the domains, and huge differences in the other half: Under
the L painting strategy, in Barman the arc-Empty heuristic
already does well, and in Elevators, Gripper, and Transport
our new DAG heuristic excels. A look at the “DLS Init” col-
umn, i. e., the number of instances solved by S in the initial
state (without any search), shows that the latter 3 domains
are exactly those where the superior applicability of DAG
red-black plans makes the difference. Column “hFF/DLS
Plan” shows that the plans found using DLS (even when
constructed within the heuristic by S) are about as good as
those found using hFF. Column “hFF/DLS Time” shows
that the search space reductions do pay off in total runtime,
except in Gripper (where all except K12 and K13 terminate
in split seconds). The maximum speed-ups are 413 in Bar-
man, 7.5 in Driverlog, 722 in Elevators, 12.9 in Tidybot, and
683 in Transport (none in the other domains); the maximum
slow-down factors are 1.2 in Barman, 25 in Driverlog, 4.8 in
Rovers, 4 in Tidybot, and 625 in Trucks.

The remainder of Table 1 sheds light on the contribution
of stop search in DLS: -S switches stop search off, -(1,2)
leaves it on but switches both applicability enhancements
off, -(2) switches only enhancement (2) off.3 We see that
stop search helps even in domains (Driverlog, Tidybot) not
solved directly in the initial state, and we see that the supe-
rior coverage in Transport is half due to the more informed
heuristic, and half due to stop search with enhancement (1).

To further investigate the effect of stop search, we gen-
erated additional instances of the three domains that are
fully solved directly in the initial state. Table 2 summa-
rizes the results for additional 100 instances of increasing
size in each of the three domains, namely Elevators, Gripper,
and Transport. Focusing on our best performer, we com-
pare DLS to both switching stop search off and our base
FF heuristic. Note that DLS still solves all, even extremely
large4 instances directly in the initial state. Switching S off
drastically reduces coverage without improving plan length.
Comparing to FF, the picture is similar. Due to a large num-
ber of evaluations, even the much faster heuristic times out

3The data for -(1) is left out of Table 1 as it is equal to that
for -(1,2). Enhancement (2) has more impact in other (non-DAG)
domains, especially NoMystery and Zenotravel, where S solves 8
respectively 19 more tasks directly with (2) than without it.

4Largest Gripper instance has 3942 balls.

Coverage Evals hFF/Own Plan hFF/Own Time hFF/Own
FF DLS DL DLS DL DLS DL DLS DL

Elevators 100 38 100 31 10788.00 1.28 1.12 1.06 28.33 0.63
Gripper 100 47 100 52 148778.00 68.59 1.00 1.00 34.14 0.75
Transport 100 30 100 26 4150.00 0.79 1.44 1.10 13.78 0.53
Sum 300 115 300 109 10788.00 1.28 1.12 1.06 28.33 0.63

Table 2: Experiments results. Coverage, evaluations, plan length, and total time for generated instances. Ratios: median over
instances solved by both planners involved.

before finding a solution. Interestingly, in Gripper, DL has
linear search space5. However, even in such case, due to
the costly per node evaluation time of DL, large enough in-
stances are not solved under the 30 minutes time bound.

Conclusion
Our work provides one more step on the road towards
systematic interpolation between delete-relaxed and non-
relaxed (real) planning. Our experience, as reflected by the
presented experiments, suggests that the key advantage of
heavy interpolation may lie in the ability to produce approx-
imate plans that are very close to real plans (or that already
are real plans). We believe that further progress will be
achieved by developing search methods exploiting that abil-
ity in a targeted manner, for example by using partially re-
laxed plans to initialize plan-space searches (e. g., (Nguyen
and Kambhampati 2001; Gerevini, Saetti, and Serina 2003)).

References
Baier, J. A., and Botea, A. 2009. Improving planning per-
formance using low-conflict relaxed plans. In Gerevini, A.;
Howe, A.; Cesta, A.; and Refanidis, I., eds., Proceedings of
the 19th International Conference on Automated Planning
and Scheduling (ICAPS’09), 10–17. AAAI Press.
Bonet, B., and Geffner, H. 2001. Planning as heuristic
search. Artificial Intelligence 129(1–2):5–33.
Cai, D.; Hoffmann, J.; and Helmert, M. 2009. Enhanc-
ing the context-enhanced additive heuristic with precedence
constraints. In Gerevini, A.; Howe, A.; Cesta, A.; and Re-
fanidis, I., eds., Proceedings of the 19th International Con-
ference on Automated Planning and Scheduling (ICAPS’09),
50–57. AAAI Press.
Chen, H., and Giménez, O. 2010. Causal graphs and struc-
turally restricted planning. Journal of Computer and System
Sciences 76(7):579–592.
Fox, M., and Long, D. 2001. Stan4: A hybrid planning
strategy based on subproblem abstraction. The AI Magazine
22(3):81–84.
Gerevini, A.; Saetti, A.; and Serina, I. 2003. Planning
through stochastic local search and temporal action graphs.
Journal of Artificial Intelligence Research 20:239–290.
Haslum, P. 2012. Incremental lower bounds for additive
cost planning problems. In Bonet, B.; McCluskey, L.; Silva,

5So does FF heuristic when using enhanced hill climbing search
and helpful actions in FF planning system.

J. R.; and Williams, B., eds., Proceedings of the 22nd Inter-
national Conference on Automated Planning and Schedul-
ing (ICAPS’12), 74–82. AAAI Press.
Helmert, M., and Geffner, H. 2008. Unifying the causal
graph and additive heuristics. In Rintanen, J.; Nebel, B.;
Beck, J. C.; and Hansen, E., eds., Proceedings of the
18th International Conference on Automated Planning and
Scheduling (ICAPS’08), 140–147. AAAI Press.
Helmert, M. 2004. A planning heuristic based on causal
graph analysis. In Koenig, S.; Zilberstein, S.; and Koehler,
J., eds., Proceedings of the 14th International Conference on
Automated Planning and Scheduling (ICAPS’04), 161–170.
Whistler, Canada: Morgan Kaufmann.
Helmert, M. 2006. The Fast Downward planning system.
Journal of Artificial Intelligence Research 26:191–246.
Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. Journal of
Artificial Intelligence Research 14:253–302.
Katz, M., and Hoffmann, J. 2013. Red-black relaxed plan
heuristics reloaded. In Helmert, M., and Röger, G., eds.,
Proceedings of the 6th Annual Symposium on Combinatorial
Search (SOCS’13), 105–113. AAAI Press.
Katz, M.; Hoffmann, J.; and Domshlak, C. 2013a. Red-
black relaxed plan heuristics. In desJardins, M., and
Littman, M., eds., Proceedings of the 27th National Confer-
ence of the American Association for Artificial Intelligence
(AAAI’13), 489–495. Bellevue, WA, USA: AAAI Press.
Katz, M.; Hoffmann, J.; and Domshlak, C. 2013b. Who
said we need to relax all variables? In Borrajo, D.; Fratini,
S.; Kambhampati, S.; and Oddi, A., eds., Proceedings of
the 23rd International Conference on Automated Planning
and Scheduling (ICAPS’13), 126–134. Rome, Italy: AAAI
Press.
Keyder, E.; Hoffmann, J.; and Haslum, P. 2012. Semi-
relaxed plan heuristics. In Bonet, B.; McCluskey, L.; Silva,
J. R.; and Williams, B., eds., Proceedings of the 22nd Inter-
national Conference on Automated Planning and Schedul-
ing (ICAPS’12), 128–136. AAAI Press.
Nguyen, X., and Kambhampati, S. 2001. Reviving par-
tial order planning. In Nebel, B., ed., Proceedings of
the 17th International Joint Conference on Artificial Intel-
ligence (IJCAI-01), 459–464. Seattle, Washington, USA:
Morgan Kaufmann.
Richter, S., and Westphal, M. 2010. The LAMA planner:
Guiding cost-based anytime planning with landmarks. Jour-
nal of Artificial Intelligence Research 39:127–177.

