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Abstract. We present the IBM Research Scenario Planning Advisor (SPA), a decision support system that allows users to gen-
erate diverse alternate scenarios of the future and enhance their ability to imagine the different possible outcomes, including
unlikely but potentially impactful futures. Our system, takes as input the relevant information from news and social media, rep-
resenting key risk drivers, as well as the domain knowledge and generates scenarios that explain the key risk drivers and describe
the alternative futures. To this end, we provide a characterization of the problem, knowledge engineering methodology, and trans-
formation to AI planning. Furthermore, we describe the computation of the scenarios, lessons learned, and the feedback received
from the pilot deployment of the SPA system in IBM.
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1. Introduction and motivation

Scenario planning is a widely accepted technique
by which organizations develop their long-term plans
[14]. Scenario planning for risk management puts an
added emphasis on identifying the extreme yet possible
risks and opportunities that are not usually considered
in daily operations. Scenario planning involves ana-
lyzing the relationship between forces — such as so-
cial, technical, economic, environmental, and political
trends — in order to explain the current situation and
to provide insights about the future. A major benefit to
scenario planning is that it helps businesses or policy-
makers to learn about possible alternative futures and
to anticipate them [9]. We use AI planning, informed
by expert domain knowledge, because some scenarios
have never yet occurred and thus cannot be projected
by probabilistic means. And we generate many differ-
ent scenarios, exploring a variety of possible futures;
because we want to be prepared for both expected and
surprising futures.

Risk management is a set of principles that focus on
the outcome for risk-taking [20]. A variety of (man-
ual) methods and standards for risk management have
been developed [2]. Our approach in addressing sce-
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nario planning for risk management is different from
previous work in that we reason about emerging risks
based on observations from the news and social me-
dia trends, and produce scenarios that both describe
the current situation and project the future possible ef-
fects of these observations. Our objective is to compute
multiple alternate scenarios, informing the decision-
makers of the breadth of possibilities that may need
consideration. This is different from a narrow focus on
predicting the most likely outcome. Furthermore, each
scenario we produce highlights the potential leading
indicators, the set of facts that are likely to lead to a
scenario, the scenario and emerging risk, the combined
set of consequences or effects in that scenario, in addi-
tion to the business implications, a subset of potential
effects of that scenario that the users care about and
are relevant to the enterprise. For example, prior to the
Brexit referendum in 2016, an international company
operating in the United Kingdom could consider alter-
native future scenarios for changes in trade and em-
ployment treaties assuming the majority voted to leave
the European Union, identifying the implications for
the company’s finances and its ability to hire, enabling
the company to act immediately to minimize the nega-
tive implications.

The main functions of Scenario Planning Advisor
(SPA) are: (1) discovering active risk drivers by ag-
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gregating relevant news from the Web and social me-
dia, and generating lists of candidate observations cor-
responding to the detected risk drivers;1 (2) generat-
ing multiple alternative scenarios based on the user-
selected observations, the domain knowledge about the
driver relations, and the potential likeihoods and im-
pact of their cascading effects.2 The main idea of the
approach in SPA is to characterize the scenario plan-
ning problem for enterprise risk management as a plan
recognition problem [19] and use AI planning to ad-
dress the plan recognition problem [11,12,15,16]. To
this end, we transform the domain knowledge as cap-
tured by Mind Maps, a graphical representation that
captures concepts and their relations, into an AI plan-
ning task. Furthermore, we generate multiple high-
quality plans [7,13,17] and cluster them into scenarios.
These scenarios are then used to start a risk conversa-
tion between the analysts and decision makers. To the
best of our knowledge, we are the first to apply AI plan-
ning in addressing scenario planning for enterprise risk
management. We believe that AI planning provides a
very natural formulation for the efficient exploration of
possible outcomes required for scenario planning.

2. Preliminaries

In this section, we briefly review the necessary back-
ground on AI planning and Plan Recognition. We con-
sider planning tasks � = 〈F,A, I,G, COST〉 in the
STRIPS formalism extended with action costs. In such
a task, F is a set of Boolean fluents. Each subset s ⊆ F

is called a state, and S(�) = 2F is the state space
of �. The state I is the initial state of �. The goal
G ⊆ F is a set of fluents, where a state s is a goal
state if G ⊆ s. A is a finite set of actions, each having
an associated set of preconditions pre(a) ⊆ F , add ef-
fects add(a) ⊆ F and delete effects del(a) ⊆ F , and
COST : A → R

0+ being a non-negative action cost
function.

The semantics of STRIPS planning is as follows. An
action a is applicable in the state s if pre(a) ⊆ s. Ap-
plying a in s results in the state s�a� := (s \ del(a)) ∪
add(a). A sequence of actions π = 〈a1, . . . , ak〉 is
applicable in s if there exists a sequence of states
〈s0, . . . , sk〉 such that s0 = s, action ai is applicable in
state si−1, and si = si−1 �ai �. If it exists, such a path is
uniquely defined, and its end state is denoted by s�π �.

1Demo video is here: https://youtu.be/6BRXwSkRC04.
2Demo video is here: https://youtu.be/N0AsRbdL7WM.

An applicable action sequence is a plan for s if s�π � is
a goal state. Its cost is the cumulative cost of actions in
the sequence: COST(π) = ∑k

i=1 COST(ai). A plan for
s with minimal cost is called optimal. The objective of
(optimal) planning is to find an (optimal) plan for I .

A Plan Recognition (PR) problem over a domain
theory is a tuple R = 〈�,O,G, PROB〉, where � =
〈F,A, I,G, COST〉 is a planning task, O = {o1, . . . ,

om}, oi ∈ F , i ∈ [1,m] is a set of observations,
G ⊆ S(�) is the set of possible goals, and PROB is
a probability distribution over the goals G. Note, this
definition includes a minor modification from previous
work [11,15] as it includes the planning task � as the
input to the plan recognition problem.

The solution to the PR problem is a pair of proba-
bility distributions. The first is the probability of plans
given the observations, P(π |O), where each π is a
plan for � that traverse through at least one goal s ∈ G
for the plan recognition problem, and satisfies the ob-
servation sequence, O. The second is the probability
of the plan recognition problem goals, given the ob-
servations, P(s|O), where s ∈ G. Note, an observa-
tion is said to be satisfied by an action sequence if it
is either explained or discarded following the work of
Sohrabi et al. [15]. This allows for some observations
to be left unexplained, in particular if they are out of
context with respect to the rest of the observations.

In previous work, AI planning is used to approxi-
mate these probabilities. In [15], P(π |O) is approx-
imated by considering the cost of the original ac-
tions, as well as the number of unexplainable obser-
vations. Posterior probabilities of goals given obser-
vations, P(s|O), are then computed by a summation
over P(π |O) for all plans that achieve s and satisfy
O. Posterior probabilities of goals given observations,
P(s|O), can also be computed by considering the cost
difference of plans, or �, that achieve the goal s and
the observations O and achieve the goal s, but not the
observations O, as in [12].

3. Scenario Planning Advisor (SPA)

The architecture for our system, Scenario Planning
Advisor (SPA), is shown in Fig. 1. There are three
major components. The planning engine, shown un-
der the Scenario Generation and Presentation compo-
nent, takes as input the output of the other two compo-
nents: the News Aggregation and the Domain Knowl-
edge. The News Aggregation component deals with an-
alyzing the raw data coming from the news and social
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Fig. 1. The SPA system architecture.

media feeds. The Topic Model, provided by the domain
expert, includes the list of important people, organiza-
tions, and keywords. The result of the News Aggrega-
tion component is a set of relevant key risk drivers or
observations, a subset of which can be selected by the
business user and is fed into the Scenario Generation
and Presentation component.

The Domain Knowledge component captures the
necessary domain knowledge in two forms, Forces
Model and Forces Impact. The Forces Model is a de-
scription of the causes and consequences for a certain
force, such as social, technical, economic, environmen-
tal, and political trends, and is provided by a domain
expert who have little or no AI planning background.
Forces Model are captured by a set of Mind Maps
(https://en.wikipedia.org/wiki/Mind_map), a graphical
representation that encodes concepts and relations. The
Forces Impact, describes potential likelihoods and im-
pact of a cause or a consequence. Forces Impact also
describes the level of importance of a main force. Busi-
ness implications is a set of predefined concepts (e.g.,
the concepts that mention the name of the company).
The Scenario Generation component takes the domain
knowledge and the key risk drivers and automatically
generates a planning problem whose solutions, when
clustered in the post-processing step induce a set of al-
ternative scenarios.

Hence, we define the scenario planning problem
for enterprise risk management as a tuple SP =
〈Forces Model, Forces Impact, Key Risk Drivers〉. Key
Risk Drivers are a subset of forces describing the cur-
rent situation as suggested by the News Aggregation
component. Solutions to the SP problem are sets of al-
ternative scenarios that consider the key risk drivers
and describe a range of possible futures considering
the likelihood, impact and importance values based on
the Forces Model and Forces Impact. Each such sce-
nario corresponds to a multi-path through the Forces
Model, traversing Key Risk Drivers. The SP problem is
computationally hard, as can be shown by, e.g., a poly-
nomial reduction from the Hamiltonian Path problem.
Thus, in what follows, we exploit planning to solve it.

4. News aggregation

SPA needs to be constantly aware of an evolving
world, filtered and aggregated based on users’ interest
profiles. For that, SPA continuously monitors multiple
real-world sources (e.g., news channels from RSS and
Atom feeds, social media posts) in multiple languages.
To this end, several text analytics are implemented to
find the information relevant for a particular domain in
the vast amount of information available to crawl. To
further refine and filter the information, SPA uses the
structured semantic knowledge available in Wikidata
using Wikidata Query Service to find important people,
organization, and relevant sources [18] and stores these
in the Topic Model. Analysts then review the generated
results and select key risk drivers that are the most rel-
evant and important for them. Note that SPA can deal
with unreliable observations (i.e., noisy, inconsistent,
missing observations) as it exploits previous work on
plan recognition as planning [15]. Hence, SPA is not
forced to explain all the selected key risk drivers but is
encouraged to explain as many observations as possi-
ble.

5. Domain knowledge

The Mind Maps (i.e., the Forces Model) and the cus-
tomization components (i.e., Forces Impact) encode
knowledge about risk drivers and business implications
elicited from the domain experts and the local country
experts correspondingly. While the reasoning engine
in SPA supports a rich representation of risk drivers
as actions in Planning Domain Description Language
(PDDL) [8], the knowledge representation used by do-
main experts is drastically simplified, to prevent con-
flicts and reduce overheads in knowledge elicitation
and maintenance. The domain experts use Mind Maps
created in FreeMind (freemind.sourceforge.net/wiki/),
a graphical tool that encodes concepts and relations, to
capture directed graphs of risk drivers and business im-
plications, with edges having hidden semantics of pair-
wise cause and effect.

5.1. Forces model as structured Mind Map

We represent the Forces Model as a set of Mind
Maps. Two example Mind Maps are shown in Fig. 2.
The main forces in these Mind Maps are the “currency
depreciation against US dollar” and the “decrease in
price of commodity”. The forces with an edge going

https://en.wikipedia.org/wiki/Mind_map
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Fig. 2. Part of the Mind Maps for (a) currency depreciation against US dollar (b) decrease in price of commodity. Edges indicate the direction of
the causes and effects. Concepts that have the name of the company in them (e.g., IBM) are the business implications.

towards the main force, are the possible causes, and the
forces with an outgoing edge from another force, are
the possible consequences. The causes and effects can
appear in chains, and cascade to other causes, and ef-
fects, with a leaf node of either a business implication,
or another force, with its own separate Mind Map that
describes it. For example, the leaf node “IBM work-
force capital available at better rates” is an example of
a business implication, and the leaf node “Decrease in
price of commodity” is itself a main force described in
the Mind Map in Fig. 2(b).

Next, we formally define Mind Maps. Let B and C

be two disjoint sets, where B is a set of symbols of type
business implications and C is a set of symbols of type
force. We now define a set of structured Mind Maps.

Definition 1. A set of structured Mind MapsM is a set
of tuples M = 〈�, σ,�〉, where � is a causal structure
for M , σ ∈ C is the main force, and � is a consequence
structure for M . A causal structure � is defined as a set
of causal sequences such that each sequence takes one
of the following forms:

• [c1, . . . , cm, σ ], where ci ∈ C, 1 � i � m, or
• [c1, . . . , ci , ci+1, . . . , cm, σ ], where [c1, . . . ,

ci] ∈ �′, for some structured Mind Map M ′ =
〈�′, ci ,�

′〉, M ′ ∈ M, and ci+1, . . . , cm ∈ C, for
some 1 � i � m

Further, a consequence structure � is defined as a set
of consequence sequences such that each consequence
sequence takes one of the following forms:

• [σ, c1, . . . , cn−1, cn], where ci ∈ C, 1 � i < n,
cn ∈ B

• [σ, c1, . . . , ci , ci+1, . . . , cn], where c1, . . . , ci ∈
C, [ci+1, . . . , cn] ∈ �′′ for some structured Mind
Map M ′′ = 〈�′′, ci+1,�

′′〉, M ′′ ∈ M, for some
0 � i < n.

Going back to our example in Fig. 2, causal struc-
ture defines the structure of the nodes and edges to the
left of the main force, i.e., all nodes with an arrow to
the main force (e.g., “High inflation”), and the conse-
quence structure defines the structure of the nodes and

edges to the right of a main force, i.e., nodes with an
arrow from the main force and all subsequent nodes,
(e.g., “IBM pricing strategy revisit”). Note that this
definition is recursive.

We can now define the notion of a path in Mind
Maps.

Definition 2. Given a set of structured Mind Maps,
M, a valid path ϕ is a sequence of symbols [c1, . . . ,

ci−1, ci, ci+1 . . . , cn−1, cn], c1, . . . cn−1 ∈ C, cn ∈ B,
such that for each 1 < i < n, there exists a Mind Map
M = 〈�, ci,�〉, M ∈ M, where [c1, . . . , ci−1] ∈ �,
and [ci+1 . . . , cn−1, cn] ∈ �.

Informally, a valid path through the set of Mind
Maps starts from the causal structure, goes through at
least one main force, and ends in a business implica-
tion symbol. Thus a valid path consists of at least three
nodes. In Fig. 2, the path “Reduced demand for com-
modity”, “Decrease in price of commodity”, “Lower
profits for local and multinational businesses”, “IBM
pricing strategy revisit” is a valid path. So is the path
“High inflation”, “Currency depreciation against US
dollar”, “Competitive exchange rate benefits net ex-
porter country”, “Decrease in price of commodity”,
“Lower profits for local and multinational businesses”,
“Decreased client investment in IBM offerings”. Note,
Mind Maps can be connected through both cause and
consequence sequences; that is, many main forces can
appear on a valid path. Also, many valid paths exist for
a given set of structured Mind Maps. The additional in-
formation provided by the Forces Impact allows us to
rank these paths.

5.2. Forces impact via questionnaire

Additional information on the Mind Maps is en-
coded through the Forces Impact. The Forces Impact,
describes potential likelihoods and impact of a cause
(i.e., nodes with an edge going into the main force) or a
consequence (e.g., nodes with an edge going from the
main force and all other cascading nodes). Forces Im-



S. Sohrabi et al. / IBM Scenario Planning Advisor: Plan recognition as AI planning in practice 5

pact also describes the level of importance of a main
force.

One way to capture this information, and the ap-
proach we take, is to ask the domain experts a series of
automatically generated questions based on the Mind
Maps. For example, the system will ask the following
question in order to understand which of the causes are
more likely: “How likely are any of the following to
lead to currency depreciation against US dollar.” The
system will also ask the following question in order
to understand which consequences are more likely and
would have a higher impact: “Assuming currency de-
preciation against US dollar occurs, please evaluate the
likelihood and impact of the following effects.” In ad-
dition, the system will ask the domain expert to specify
the relative importance of the main forces in their par-
ticular situation (i.e., company). Importance, impact,
and likelihood can take one of the values: low, medium,
or high. This can be easily extended to any finite num-
ber of values.

More formally, given a set of Mind Maps M, let
	 be the set of all possible pairs of symbols, where
for each pair r ∈ 	, there exists a Mind Map M =
〈�, σ,�〉, such that r appears in � or �. We denote
r impact and r likelihood to denote the impact and likeli-
hood of that pair (i.e., edge in a Mind Map). Also, we
denote, M importance, to be the level of importance for a
given structured Mind Map M ∈ M.

Given this additional information on the Mind Maps,
we can define a ranking among valid paths. Informally,
valid paths that go through Mind Maps with high im-
portance value, causes and consequences with high im-
pact and likelihood have a higher quality. In the next
section, we describe how these values can be encoded
with action costs such that a high-quality valid path
would map to a low-cost plan.

6. Transformation to planning

Since the scenario planning problem, as mentioned
in Section 3, is NP-hard, in this section we describe
our solution using planning. Given a scenario plan-
ning problem, we define its corresponding plan recog-
nition problem, which allows us to apply the previ-
ous work on plan-recognition-as-planning to generate
many plans. In addition, we will describe our method
of translating the domain knowledge into the planning
task.

Definition 3. Given a scenario planning problem,
SP, as described in Section 3, a corresponding plan
recognition problem is defined as a tuple SPPR =
〈�,O,G, PROB〉, for a planning task � = 〈F,A, I,

G, COST〉 described by the Forces Model and Forces
Impact, with the set of observations that consists of the
selected Key Risk Drivers, the set of possible goals G
that consists of the business implications as specified in
the Forces Model, and PROB is the uniform probability
distribution over the set of possible goals.

Given the corresponding plan recognition problem
SPPR, we follow the plan-recognition-as-planning ap-
proach [15] that approximates the posterior probabil-
ities of goals and plans by computing a set of plans.
However, instead of computing the posterior probabili-
ties of goals and plans, which is not the objective of the
scenario planning problem, we group the set of com-
puted plans and present the grouping as scenarios to
the users.

Definition 4. Given a scenario planning problem, SP,
and its corresponding plan recognition problem, SPPR,
as defined above, solutions to SPPR problem are sets of
scenarios, where each scenario is a collection of plans
such that each plan π : (i) traverses a state that meets
at least one of the possible goals (i.e., ∃G′ ∈ G, where
G′ ⊆ s) and (ii) satisfies the set of observations (i.e.,
observations are either explained or discarded).

Informally, scenarios group plans by a certain simi-
larity criteria, e.g., sets of facts that are true in the end
state. We further elaborate on that in Section 7. Note
that a set of scenarios or a solution to the SPPR prob-
lem also formally defines a solution to the scenario
planning problem, SP, as described in Section 3.

Next, we will describe how to translate the set of
Mind Maps M together with their importance level,
impact and likelihoods into a planning task. We will
also show that a valid path maps directly to a plan for
the planning task. Note that the (is-true)predicate en-
sures that only one indicator action is executed for each
valid path.

Definition 5. Given a set of Mind Maps M, their im-
portance level M importance, M ∈ M, set of all possi-
ble pairs of symbols 	, and their impact and likelihood
levels, r impact, r likelihood, r ∈ 	, we define a planning
task � = 〈F,A, I,G, COST〉 as follows:

• F is a set of fluents that appear in A:

∗ (is-true),
∗ (achieved),
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∗ (bis c) for all c ∈ B,
∗ (at c) for all c ∈ C,
∗ (low c1 c2), (med c1 c2), (high c1 c2) for all

c1, c2 ∈ C, corresponding to the combined
values of r impact, r likelihood for the pair r =
(c1, c2), and

∗ (f-low c), (f-med c), (f-high c), for all c ∈ C,
where c is a main force for one of the Mind
Maps M ∈ M, corresponding to M importance.

• A is the union of the following action sets:

∗ Anext−low, for each pair (c1, c2) ∈ 	, with pre-
condition (low c1 c2) and (at c1), add effects (at
c2), delete effects (at c1), and cost correspond-
ing to the combined values of r impact, r likelihood,

∗ Anext−med, Anext−high, similar to Anext−low,
where low is replaced with med and high re-
spectively,

∗ Anextbis, for each pair (c1, c2) ∈ 	, where
c2 ∈ B, with precondition (at c1), add effects
(bis c2), delete effects (at c1), and a cost cor-
responding to the combined values of r impact,
r likelihood,

∗ Aindicator−low, for each causal sequence [c1,

. . . , cn] as defined in M ∈ M, with precondi-
tion (f-low cn) and (is-true), add effects (at c1),
delete effects (is-true), and a cost correspond-
ing to M importance,

∗ Aindicator−med, Aindicator−high where low is re-
placed with med and high respectively, and

∗ Aachieve−goal for each c ∈ B, with precondition
(bis c), add effect (achieved), no delete effect,
and zero cost.

• I = {(is-true), (low c1 c2), (med c1 c2), (high c1

c2), (f-low c), (f-med c), (f-high c)}, as defined
by F .

• G = {(achieved)}.

Theorem 1 (Soundness/Correctness). Given a set of
Mind Maps M and the corresponding planning task �

as defined above, if ϕ is a valid path for M, then we
can construct a sequence of actions π , such that π is a
plan for the planning task �. On the other hand, if π is
a plan for the planning task �, then there exists a valid
path ϕ for M, where ϕ can be constructed from π .
Furthermore, a valid path ϕ1 has a higher quality than
a valid path ϕ2 if and only if COST(π1) < COST(π2)

for the corresponding plans π1 and π2.

Proof. (⇒) Given a valid path ϕ = 〈c1, . . . , ci−1, ci ,

ci+1 . . . , cn−1, cn〉, we construct a plan π for the plan-
ning task � as follows. The first action is an indicator
action for 〈c1, . . . , ci−1, ci〉. Then, a sequence of next
actions, one for each pair of symbols in the path, fol-
lowed by a nextbis action for the pair (cn−1, cn). Fi-
nally, an achieve-goal action for the business implica-
tion cn ∈ B achieves the goal of the planning task.

(⇐) Given a plan π for the planning task �, we con-
struct a valid path for M, considering the arguments
of the actions. We also must make sure that the cost of
the actions corresponds to the importance, impact and
likelihood values. �

The translation method described above could have
different implementations. In particular, to determine
the costs associated with the combined values for like-
lihood and impact, different methods can be used. For
example, to combine likelihood and impact, one can
consider a high value, if both the likelihood or im-
pact are high, a medium value if either values are high,
or both are medium, and a low value otherwise. The
low/medium/high can also map to any numbers in the
cost of the action. However, as long as their relative
difference adheres to the three levels, where low maps
to a higher cost and vice versa, the theorem holds.

We can directly represent the transformed planning
task in a “lifted” planning language such as PDDL
[8] where we would define one general and “lifted”
set of actions in the domain file, defining problem
files based on the given Mind Maps. As a generic
grounding algorithm may take a substantial amount of
time, we also experiment with creating directly a (par-
tially) grounded planning task. To obtain such (par-
tially) grounded planning task, we fully ground the
“next” and “indicator” actions, alleviating the need for
the static predicates (low c1 c2), (med c1 c2), and (high
c1 c2), as well as (f-low c), (f-med c), and (f-high c).
All other actions remain lifted. We evaluate the perfor-
mance of both methods in the experimental evaluation
section.

7. Plan and scenarios computation

In the previous section we discussed a sound and
complete translation of Forces Models and Forces Im-
pact into a planning task. In this section, we discuss
how to compute a solution to the plan recognition prob-
lem SPPR = 〈�,O,G, PROB〉.
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Fig. 3. Sample generated scenario.

To compute a set of scenarios (see Fig. 3 for an
example of a scenario) we perform the following
steps: (i) follow previous work on plan-recognition-as-
planning to compile away the observations and ensure
that at least one goal is satisfied, (ii) compute a set of
high-quality plans on the transformed planning prob-
lem, and (iii) cluster the resulting plans into scenarios
so that similar plans are grouped together. The scenar-
ios are clusters of high-quality plans that include a tra-
jectory of cause-effect transitions from the Mind Maps,
explaining the largest possible subset of observations,
and such that each plan ends with a business implica-
tion.

To transform the plan recognition problem SPPR
into a planning task, we follow the previous work [15],
which adds a set of “explain” and “discard” actions
for each observation. It is important to note that the
domain knowledge can be incomplete and the obser-
vations can be unreliable and not all of them explain-
able. Hence, the ability to discard some observations
may be crucial to the solvability of the planning task.
To encourage the planner to generate plans that explain
as many observations as possible, a penalty is set for
the “discard” action in the form of a higher cost. The
penalty is relative to the cost of the other actions in the
domain. Note, a high discard cost may cause a plan-
ner to consider many long and unlikely paths, while a
low discard may cause a planner to discard observa-
tions without trying to explain them. Hence, we pick a

middle-ground, a penalty that is five times the cost of
the next-med action. The resulting planning task cap-
tures both the domain knowledge that is encoded in the
Mind Maps and its associated weights of the edges as
well as the given set of observations, and the set of pos-
sible goals, associated with the plan recognition aspect
of the problem.

To compute a large set of high-quality plans on the
transformed planning task, we use top-k planning tech-
niques [7,17]. Top-k planning is defined in as the prob-
lem of finding k set of plans that have the highest qual-
ity. We use the K∗ algorithm [10] in the SPA system.

To cluster the plans, we apply a hierarchical cluster-
ing algorithm on the resulting plans [3]. To compare
plans with each other, we consider the union of the set
of states traversed by that plan. That is, we consider the
set of all predicates that were true at some point along
the plan. Given that the number of ground predicates
(i.e., F ) is finite, we first represent each plan through
a bit array of the same size such that 1 indicates the
predicate was true at some point during the execution
of that plan, and 0, otherwise. To determine the Eu-
clidean distance between two plans, we compute an ex-
clusive or of the corresponding bit arrays and take the
square root of the sum of 1 bits. Given this distance
function for each pair of plans, we compute a dendro-
gram bottom-up using the complete-linkage clustering
method [3]. The user can specify a minimum and max-
imum consumable number of scenarios. These settings
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Fig. 4. Screenshot of part of an explanation graph.

are used to perform a cut through the dendrogram that
yields the number of plans in the specified interval with
the optimal Dunn index [4], a metric for evaluating
clustering algorithms that favors tightly compact sets
of clusters that are well separated. Hence, rather than
presenting all plans, we group similar plans and only
present 3–6 clusters of plans or scenarios to the end
user.

We present the scenarios as both text summaries and
graphically. We perform several tasks to prepare the
scenarios for presentation. First, we separate the predi-
cates in each cluster into business implications and reg-
ular predicates (i.e., the scenario and emerging risk).
Second, we identify the leading indicators or the dis-
criminative predicates, i.e., predicates that appear early
on the plans that are part of one scenario but not other
scenarios (i.e., they tend to lead to this scenario and
not others); these are useful to monitor in order to de-
termine early on whether a scenario is likely to oc-

cur. Third, we compute a summary of all plans that
are part of the scenario and present this as a graph to
the user (see example in Fig. 4). This serves as an ex-
planatory tool for the predicates that are presented in
each scenario. This graph also shows how the differ-
ent Mind Maps are connected with each other through
their shared forces.

8. Experimental evaluation

In this section, we evaluate the performance of the
planner, quality of the clusters measured by the size
of the cluster, and how informative each cluster is,
measured by number of predicates and business im-
plications. In the next section, we provide details on
the pilot deployment of the Scenario Planning Advi-
sor (SPA) tool, feedback and the lessons learned in in-
teracting with the domain experts as well as the busi-
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Table 1

Performance comparison in terms of coverage, time, and node expansion. NE is the average number of nodes expanded. time is measured in
seconds. PGE/PGD is planner grounding enabled/disabled

Blind Heuristic LM-cut Heuristic

Lifted Grounded Lifted Grounded

PGE PGD PGE PGD PGE PGD PGE PGD

Solved 123 123 123 123 76 115 81 112

Time 109.95 0.90 1.19 2.11 284.13 3.58 63.05 13.90

NE 51,625 51,625 51,625 51,625 8,199 17,173 8,186 17,165

ness users. All our experiments were run on Intel(R)
Xeon(R) ES-2680 @ 2.93 GHz machines, using a sin-
gle core for each run, with the time and memory limit
of 30 min and 2 GB, respectively.

Since the problem is computationally hard, and there
exist no dedicated solver for the problem, we use the
top-k planner [13]. The planner is based on a heuris-
tic search algorithm K∗ [1] and implements the LM-
cut heuristic [6]. It can also be run with the planner
grounding step being disabled. However, this has a
negative effect on the informativeness of the heuristic
in use.

We create four sets of planning tasks. The first one is
created using the full set of available Mind Maps (670
transitions overall) and a full set of 112 possible goals.
The second one is created by taking a subset of Mind
Maps, resulting in 403 overall transitions and 65 pos-
sible goals. To estimate the grounding influence on the
overall performance, the last two sets mirror the first
two, but are (partially) pre-grounded. We refer to these
four sets as “lifted all”, “lifted small”, “grounded all”,
and “grounded small”, respectively. To control the task
difficulty, we vary the number of observations that are
chosen randomly from the set of possible observations.
For each number of observations chosen, we create 10
instances with that number of observations.

To explore the best planner configuration, we com-
pare the planning performance of the two methods of
translating the Mind Maps as well as the use of a
heuristic and planner grounding. We use “lifted small”
and “grounded small” with both the blind and the LM-
cut heuristic [6], and with and without planner ground-
ing. We use 10 problems of each observation set size,
up to 45 observations, resulting in 150 problems over-
all. The timeout was set to 30 minutes. The summary
of the results is shown in Table 1. Average time and
node expansion are computed only on problems solved
by all eight configurations.

The results show that while the use of LM-cut leads
to exploring fewer nodes in search, especially with
planner grounding enabled, the reduction in search ef-

fort does not compensate for the high computation
time. Thus, the planner performance worsened, lead-
ing to solving fewer problems. Comparing the “lifted”
to the “grounded” formulation, the heuristic informa-
tiveness does not sufficiently improve when shifting to
a partially grounded representation and not enforcing a
full grounding by the planner. When a grounding is en-
forced by the planner, the heuristic greatly reduces the
number of node expansions, but even such dramatic re-
duction is not sufficient to compensate for the consid-
erably increased computation time. Thus, in what fol-
lows, we restrict our attention to the lifted representa-
tion and to the blind heuristic, without enforcing full
grounding by the planner.

Next, we present the evaluation of SPA performance
on “lifted small” and “lifted all”. The results are shown
in Table 2. The objective of this experiment is to show
how the planning task size influences the performance
and the resulting clusters. All entries show averages
over 10 tasks of the same size. We use the same num-
bers of observations for both methods. The columns
present the planner performance in seconds, number of
observations, “Obs”, number of unexplained/discarded
observations in the optimal plan, “Disc”, number of ac-
tions in the optimal plan, “Act”, and number of scenar-
ios generated “Scen”. We also show the average and
standard deviation for the number of members of each
cluster, number of predicates, and number of business
implications, “Bis goals”, in each scenario. The time-
out was set to 30 minutes. Problems with 30 or more
observations had timeouts and are not reported here.

The results show that planner performance depends
not only on the Mind Maps size, but also on the num-
ber of observations. Further, as the number of obser-
vations grow, not only the planner’s run-time perfor-
mance worsens, but also the number of scenarios in-
crease, and the number of plans in the scenario de-
crease. On the other hand, as the number of observa-
tions increase, the number of predicates in a scenario
and the number of business implications decrease, but
not consistently; moreover, the low standard deviation
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Table 2

Performance comparison as we increase the number of observations and the number of Mind Maps

#Obs Lifted Small Lifted All

Time (sec) Average Number of Members Predicates Bis goals Time (sec) Average Number of Members Predicates Bis goals

Disc Act Scen Avg Std Avg Std Avg Std Disc Act Scen Avg Std Avg Std Avg Std

1 0.01 0.0 4.7 2.70 105.10 92.6 12.00 2.9 4.70 1.1 0.02 0.0 4.7 2.00 125.00 80.9 11.10 2.4 4.80 1.5

2 0.01 0.5 6.7 3.00 102.40 90.9 11.70 3.0 3.70 1.3 0.02 0.3 7.0 2.70 100.00 68.4 11.30 2.7 5.00 1.6

4 0.02 1.6 10.7 2.90 99.60 88.0 12.50 3.2 3.40 1.3 0.04 1.5 10.8 2.30 114.60 87.7 10.60 1.9 4.90 1.0

8 0.10 4.4 16.7 4.20 75.50 64.0 10.80 2.6 2.60 1.0 0.15 3.7 18.0 3.40 85.40 75.4 9.90 2.1 4.60 1.4

10 0.22 5.0 22.5 5.10 56.90 63.3 8.50 2.0 2.70 1.0 0.37 5.1 20.7 4.40 70.00 60.4 8.10 2.2 3.70 1.3

12 0.48 5.9 27.4 5.20 55.60 50.9 9.80 1.5 2.10 0.9 1.09 5.4 27.7 5.20 52.90 57.5 8.70 1.6 3.40 0.6

15 1.41 8.6 30.1 5.10 56.20 53.6 11.00 1.6 2.00 0.8 2.63 8.1 30.4 4.50 67.30 54.5 10.50 1.8 4.10 1.4

18 2.59 9.9 35.1 5.20 56.30 65.3 8.70 1.3 2.00 0.9 5.44 9.4 34.9 4.90 62.30 71.6 7.70 1.6 4.10 0.8

20 22.24 11.4 39.9 5.30 55.70 54.4 9.40 1.4 1.80 0.7 65.62 10.7 40.6 4.56 63.22 43.6 11.22 1.4 3.22 0.4

23 74.66 14.5 40.2 4.80 64.10 50.3 9.30 1.4 2.00 0.6 198.28 14.4 40.8 4.63 63.00 51.9 9.25 1.6 4.63 0.9

26 88.85 16.9 46.1 5.25 57.88 58.5 9.38 1.1 2.13 1.0 236.34 17.0 43.8 5.17 51.83 39.2 7.83 1.2 3.50 1.0



S. Sohrabi et al. / IBM Scenario Planning Advisor: Plan recognition as AI planning in practice 11

indicates that the clusters are balanced and informative.
Also note that, given the number of plans to cluster,
cluster sizes depend on the requested maximal num-
ber of clusters, a parameter of the clustering algorithm.
This parameter was set to find between two and seven
clusters. Decreasing the max cluster limit, increases
the member size, as well as the number of predicates
and bis implications in each scenario.

9. Pilot deployment and user feedback

The SPA tool was evaluated in a pilot deployment
with several teams of business users at IBM, whose
responsibilities included risk management within their
business area. For those teams, SPA was introduced to-
gether with the new scenario planning process; hence,
there was no pre-automation baseline available to com-
pare against. In addition, the functionality provided by
the overall tool is not easily reproducible, due to the
broad news analysis the tool performs.

The Mind Maps were developed over the course of
three months by one enterprise risk management ex-
pert working with an assistant and in consultation with
other experts. While Mind Maps in general can be in
any form, we briefly educated the domain experts to
provide structured Mind Maps as defined in Defini-
tion 1. The pilot deployment featured the set we re-
ferred to above as “lifted all”. Additionally, the end
users (i.e., the analysts) provided us with a list of pos-
sible keywords, organizations of interest, key people,
key topics, and were able to pick the relevant key risk
drivers when we presented them with the summary of
relevant news and RSS publications. Note that while
the Q&A process takes some time, the domain ex-
perts had received education and guidance and were
aware of the process. The domain experts also know
that the result quality depends on the richness of the
Mind Maps they create. We also actively work on en-
hancing their experience by providing several tools to
assist them. For example, we proposed an approach
to suggest a list of important people, organizations
and sources to the domain experts using the Wikidata
Query Service [18].

The tool was configured with the help of end
users. In particular, configuration values were iden-
tified based on the generated results quality and the
assessment by end users. Specifically, the number of
plans to find, minimum and maximum number of clus-
ters, and action costs are all configurable and were as-
signed by exploring various values. In addition, all the

cost of the actions, both with respect to the translation
of the domain knowledge into planning as well as the
associated penalty for a discard action is also config-
urable. While we currently set all these configurations
with the help of the users, all configurable values can
be learned in the future. In addition, we have tried var-
ious syntax-based distance metrics, the one presented
in the paper produced the best scenarios according to
the domain experts.

The teams have universally found the tool easy to
use and navigate. Although no detailed feedback was
collected for each scenario, the teams have reported
that approximately 80% of generated scenarios had
identified the implications that directly or indirectly af-
fect the business. By design, the tool aims at helping
the business users to think outside the box and is ex-
pected to generate some irrelevant scenarios, among
others. Judging by the provided comments, the teams
whose business is affected by frequent political, regu-
latory, and economic change have found the tool more
useful than those operating under relatively stable con-
ditions. In addition, the teams found the explanation
graph, a visualization of a set of plans, essential to the
adoption of the tool. They believe that the explanation
graph “demystifies” the tool by providing them with an
explanation of why they are presented with a particu-
lar scenario. This is critical for the business users or
policy-makers who would be basing their decisions on
the generated scenarios.

In working with the domain experts and users from
the start of the pilot deployment, we learned several
lessons, which can be applicable to other settings:
(1) the users are interested in using AI planning tech-
niques, but expressing their problems in PDDL or an-
other existing formal planning language is a barrier. To
overcome this, we asked the experts to provide their
knowledge in the form of structured Mind Maps, which
we then translated to the planning task. Further, dif-
ferent experts may want to work on different parts of
the problem; hence, rather than having one huge Mind
Map, we allow them to provide a set of Mind Maps,
each of which can be developed separately, by different
experts; (2) the users are interested in being presented
with several scenarios rather than one, along with the
explanation of each scenario. This captures the possi-
ble alternatives rather than a precise prediction, anal-
ogous to a generation of a multiple plans rather than
a single (optimal) plan; (3) the users are interested in
personalized scenarios, specific to their particular use
case. To address that we consider the Mind Maps as a
template and allow personalization of the scenarios by
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incorporating additional information provided by the
Force Impact. Hence, computing a set of high-quality
plans for different use cases results in different set of
plans, which in turn results in different scenarios.

10. Related work and summary

There exist a body of work on the plan recognition
problem (e.g., [11,24]). However, most approaches as-
sume that the observations are perfect, mainly because
raw data is not taken as input, but analyzed and trans-
formed into observations in pre-processing [21]. Also,
plan libraries as input are mostly assumed (e.g., [5]),
whereas we use planning tools. Furthermore, there is a
body of work on learning the domain knowledge (e.g.,
[22,23]). Our focus in addressing knowledge engineer-
ing challenges was to transform one form of knowl-
edge, expressed in Mind Maps, into another form that
is accessible by automated planners, similarly to the
work of [16], adapting it to scenario planning. How-
ever, learning can be beneficial in domains in which
plan traces are available.

In this paper, we applied AI planning techniques
to a novel application, scenario planning for enter-
prise risk management. We addressed knowledge en-
gineering challenges of encoding the domain knowl-
edge from domain experts. To this end, we designed
a tool, Scenario Planning Advisor (SPA), that takes as
input raw data, news and social media posts, and inter-
acts with the business user to obtain observations. SPA
also allows uploading Mind Maps, a way of express-
ing the domain knowledge by the domain experts, and
obtains additional information based on these Mind
Maps from an automatically generated questionnaire.
SPA then generates scenarios by first finding a many
quality plans and then clustering the found plans into
a small set of clusters, to be consumable by a human
user. The SPA system is in pilot deployment with busi-
ness users. The feedback received so far has been pos-
itive and confirms the benefits of our approach to the
scenario generation application.
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