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Abstract

There is an increasing body of work using Large Language
Models (LLMs) as agents for orchestrating workflows and
making decisions in domains that require planning and multi-
step reasoning. As a result, it is imperative to evaluate LLMs
on core skills required for planning. In this work, we present
ACPBench, a benchmark for evaluating the reasoning tasks in
the field of planning. The benchmark consists of 7 reasoning
tasks over 13 planning domains. The collection is constructed
from planning domains described in a formal language. This
allows us to synthesize problems with provably correct solu-
tions across many tasks and domains. Further, it allows us the
luxury of scale without additional human effort, i.e., many
additional problems can be created automatically. Our exten-
sive evaluation of 21 LLMs and OpenAI o1 reasoning models
highlight the significant gap in the reasoning capability of the
LLMs. Our findings with OpenAI o1, a multi-turn reasoning
model, reveal significant gains in performance on multiple-
choice questions, yet surprisingly, no notable progress is made
on boolean questions.

Dataset — https://ibm.github.io/ACPBench
Extended version —

https://doi.org/10.48550/arXiv.2410.05669

1 Introduction
Recent research has explored the potential of using Large
Language Models (LLMs) as reasoners for solving multi-
step reasoning problems (Chu et al. 2024). Building on their
success in certain reasoning tasks and benchmarks, there is
a growing interest in using LLMs as agents for orchestrat-
ing workflows and making decisions in domains that require
planning (Huang et al. 2024; Wang et al. 2024a). This is a
promising area of research, with potential applications in var-
ious fields. However, there is a lack of systematic evaluation
of LLMs reasoning and planning capabilities.

This work aims at evaluating and improving language
models’ ability to plan. However, end-to-end evaluation of
planning ability is challenging. One, if an agent reaches a goal
it does not necessarily mean it can plan. Second, evaluating
a plan might be difficult in a domain where there can be
multiple plans to achieve the goal. So, instead of focusing
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Figure 1: Performance of few state-of-the-art LLMs over
different tasks in ACPBench.

on the entire end-to-end planning ability, we distill 7 atomic
reasoning tasks that are critical for reliable planning and
create datasets of such tasks. These tasks focus on reasoning
about Actions, Change (transitions) and Planning; hence,
we call our benchmark as ACPBench. The tasks include
single step reasoning, like evaluating whether an action can
be performed in the described state, as well as multi step
reasoning, like whether a sequence of actions is a valid plan
for the described state and the described goal.

For each task, ACPBench features both boolean (Bool)
and multiple-choice (MCQ) style questions from 13 domains.
All the datasets are generated from a formal representation
of the domain in Planning Domain Definition Language
(PDDL) (McDermott 2000). Twelve of these domains are
well-established benchmarks in both planning and reinforce-
ment learning communities, readily available in PDDL for-
mat. Inspired by the shuffle task in BigBenchHard Suite (Suz-
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gun et al. 2023), we have created an additional domain from
scratch. The benefit of constructing the dataset from PDDL
descriptions is twofold. First, it allows us to use existing plan-
ning tools and second, and arguably more important, it allows
obtaining provably correct information for all the tasks. Nat-
ural language templates for these domains were carefully
crafted by 5 researchers. These templates and planning tools
enable us to generate massive data for each task.

We evaluate performance of OpenAI o1 reasoning model
and 21 state-of-the-art language models (including open-
sourced Phi-3 128K (Abdin et al. 2024), Granite
3.0 (Granite Team 2024), Mixtral 8x22B (MistralAI
2024), LLAMA-3 70B (Dubey et al. 2024), and a closed
source GPT-4o (OpenAI 2024a)) on the ACPBench. We
found that, with Chain-of-Thought prompting (COT) (Wei
et al. 2022) and 2-shot examples, GPT-4o was only able
to achieve 78.40% accuracy on MCQ questions in the ACP-
Bench; with lowest accuracy of 52.50% for the most difficult
(validation) task. Similarly, OpenAI o1 preview achieves ac-
curacy of 87.31% on average for the MCQ questions, with
lowest accuracy of 63.08% for the most difficult task. Fig-
ure 1 shows the overall performance of few selected mod-
els on all 7 tasks of ACPBench. To understand whether the
smaller language models can improve their performance on
these tasks, we finetune a language model on these tasks.
The finetuning resulted in substantial improvements in per-
formance across tasks and even demonstrated the ability to
generalize to previously unseen domains.

In summary, our contributions are as follows:
• We identify a collection of 7 reasoning tasks required

for efficient planning and introduce the first of its kind
large-scale benchmark—ACPBench.

• We evaluate OpenAI o1 reasoning models and 21 state-of-
the-art language models of different sizes on ACPBench.

• We finetune a 8B parameter model and show that the
finetuned model performs on par with the large models.

• We conduct ablation studies as follows: (a) to understand
effects of in-context example and COT, (b) to investigate if
tasks in ACPBench capture the plan generation ability, and
(c) to understand how LLMs’ abilities have progressed
over time for ACPBench tasks.

2 Related Work and Background
Recognizing the importance of evaluating reasoning and
planning ability of LLMs, various benchmarks have been
proposed (Liu et al. 2024; Ma et al. 2024). Most relevant to
our work are the benchmarks that are generated from PDDL
tasks. He et al. (2023) proposed a natural language based
question answering style dataset to evaluate LLMs on 4 tasks
of projection, execution, planning, and goal recognition. Plan-
Bench (Valmeekam et al. 2023b) is a benchmark suite with
8 planning tasks including plan generation, reasoning about
plan execution, and plan verification. Both these benchmarks
focus on a limited number of planning domains (mainly the
BlocksWorld domain), employing a template-based approach
to generate natural language text. In contrast, AutoPlanBench
(Stein et al. 2024) proposes to leverage LLMs to generate the
natural language template. They prompt an LLM for natural

Context: This is a swap domain where agents
are swapping items or roles. Each agent
is always assigned a single item/role. The
goal is to obtain desired items/roles
assigned. There are 8 agents: carol,
michelle, xena, vic, dave, zoe, heidi, and
alice. There are 8 items/roles:
quadcopter, frisbee, necklace, whale,
iceskates, guitar, zebra, and slinky.
Currently, heidi is assigned necklace,
michelle is assigned quadcopter, dave is
assigned iceskates, vic is assigned whale,
xena is assigned slinky, carol is
assigned frisbee, alice is assigned zebra,
and zoe is assigned guitar.

Bool: Is the following action applicable in
this state: trade guitar of zoe for
iceskates of dave?
MCQ: Which of the following actions will be
applicable in this state?

A. exchange frisbee of carol with zebra of
alice.
B. exchange guitar of zoe with necklace of
vic.
C. exchange guitar of heidi with zebra of
zoe.
D. exchange guitar of vic with zebra of zoe
.

Figure 2: Example of boolean and multi-choice questions
from the Applicablity task in ACPBench. The context con-
tains the domain and the problem description. Query to LLM
consists of context and a boolean or multi-choice question.

language template per predicate and per action. By reducing
the human effort required for template generation, they were
able to scale up the dataset to 12 domains. However, they
limit their focus to a single task - plan generation.

In parallel, Handa et al. (2024) proposed ActionReasoning-
Bench, featuring six tasks: Fluent Tracking, State Tracking,
Action Executability, Effects of Actions, Numerical RAC,
and Composite Questions. Although there is some overlap
between the tasks in ActionReasoningBench and ACPBench
(for example, the Effects of Actions task overlaps with our
Progression task), the majority of the tasks we propose are
not covered by ActionReasoningBench: Reachability, Action
Reachability, Validation, Justification, Landmarks. Similarly,
the following ActionReasoningBench tasks are not covered
in ACPBench: State Tracking, and Numerical RAC.

We now switch to providing the necessary background.
The ACPBench questions collection is generated based on
PDDL tasks. A PDDL task is defined over the first-order
language; consisting of predicates, variables, and objects. A
state s is defined as a conjunction of grounded (by objects)
predicates, also called atoms. An action a is defined as a
triple 〈pre(a), add(a), del(a)〉; consisting of preconditions,
add effects and delete effects, each being a conjunction of
atoms. An action a is applicable in a state s if the state
satisfies the preconditions of the action, i.e pre(a) ⊆ s. On
performing an action a in state s, the world transitions to
the next state t = s[a] = s \ del(a) ∪ add(a). A goal g is
also a conjunction of atoms, and a state s is a goal state if
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g ⊆ s. A sequence of actions πs = a1 . . . an is applicable
in the state s if the actions are applicable in a sequence to
the resulting states. πs is a plan for the state s if πs is an
applicable sequence of actions that results in a goal state.

3 ACPBench
3.1 Domains
ACPBench collection consists of 11 classical planning do-
mains, Alfworld (Shridhar et al. 2021), and a novel swap
domain. The 11 classical planning domain, which were also
used by AutoPlanBench (Stein et al. 2024), have public
problem instance generators (Seipp, Torralba, and Hoffmann
2022). Alfworld is a text-based reinforcement learning envi-
ronment where an agent is given household tasks like ‘put
a pan on the table’. Alfworld uses tasks from the Alfred
dataset (Shridhar et al. 2020) and encodes the dynamics of the
domain in publicly available PDDL1. Corresponding PDDL
problem files are obtained from the MINT benchmark (Wang
et al. 2024b). For the novel Swap domain, we created the
PDDL domain and the problem instance generator. Figure 2
contains an example problem description in this domain. All
the domains are summarized in Table 1.

We meticulously curated a set of templates to transform
the PDDL task into a natural language description. Following
AutoPlanBench, we explored using LLMs to automatically
generate the templates, however, we found the outcome not
reliable and needed significant modification. So, instead, 5 re-
searchers crafted the translation, carefully selecting and refin-
ing the templates to ensure they accurately convey the desired
information. Specifically, we made templates for domain de-
scription, problem description and actions, from which we
can compose (partial) states – current state or a goal. These
three templates, together with the PDDL files, are to be pro-
vided for every new domain, should we decide to extend the
benchmark in the future.

3.2 ACPBench Tasks
We focus on 7 reasoning tasks within the realm of planning.
For each task, we provide a description and explain how the
data was collected.

Applicability (App) The first, basic requirement for effi-
cient planning is to determine the valid, available actions in a
given situation. Various existing work have discussed LLMs
fall short of this basic ability. When using GPT-4 Turbo for
travel planning, Xie et al. (2024) found that more than 30%
of the failed plans had invalid action dead loop–that is even
when the model was informed that the action is invalid, LLMs
repeated these actions.

For an action to be valid, its preconditions must hold in the
state. Given a state s and the set of actions O, the subset of
applicable actions would be O(s) = {a ∈ O | pre(a) ⊆ s},
easily computable by iterating over the actions. We there-
fore can create a boolean question with a positive answer by
sampling from O(s) and with a negative answer by sampling
from O \O(s). A multiple-choice question can be created by

1https://github.com/alfworld/alfworld/blob/master/alfworld/
data/alfred.pddl

Domain # Pred. # Actions Max char.
Blocksworld 5 4 1770

Logistics 9 6 1065
Grippers 4 3 1057

Grid 12 5 1235
Ferry 7 3 2132

FloorTile 10 7 3196
Rovers 25 9 3631
VisitAll 3 1 1347
Depot 6 5 1301

Goldminer 12 7 1140
Satellite 8 5 4302

Swap 1 1 849
Alfworld 34 19 4099

Table 1: Statistics of the 13 domains in ACPBench. The
top 8 domains are used for both finetuning and evaluation.
The bottom 5 domains are exclusively used for evaluations.
Columns indicates the number of predicates and lifted actions
in the PDDL domain, as well as the max character length of
the NL problem description in the generated dataset.

sampling the correct answer fromO(s) and wrong candidates
from O \O(s). Figure 2 shows example domain and problem
description used in the context as well as examples of Bool
and MCQ questions for the applicability task.

Progression (Prog) The next task evaluates LLMs ability
to understand the outcome of an action or change. This ability
is important to track information across transitions. The sub-
par performance of LLMs on the Tracking Shuffled Objects
task in the Big Bench Hard dataset suggests a significant
limitation in their ability to reason about the consequences of
actions or changes (Suzgun et al. 2023). Further, a few papers
have proposed to use LLMs to execute a plan. For example,
Wang et al. (2023) asks LLM to devise a plan and execute it
step-by-step to reach the goal. To faithfully execute a plan,
it is important for LLMs to demonstrate understanding of
progression; how the world state is changed by the action.

When a valid action is performed, the state changes in the
following manner: The delete effects of that action will no
longer hold and the add effects will hold. Everything else
remains unchanged. Given a state s and an action a, the next
state is t = s \ del(a) ∪ add(a). We can now partition the
facts in the problem into four sets: the facts that held before
applying the action and still hold (s ∩ t), the facts that held
before but not anymore (s \ t), those that did not hold but
now hold (t \ s), and those that did not hold before and
still don’t hold (F \ (s ∪ t)). While the answer of whether
the fact is true after applying the action depends only on
whether it is in t, the chain of thoughts leading to the answer
differs for the aforementioned four cases. We construct a
boolean question by sampling from each of the four fact sets
(if they are not empty), getting at most two positive and two
negative examples per state. A single MCQ is constructed
by sampling one possible answer from each of the four fact
sets (non-empty ones), according to a uniform procedure
described above.
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Reachability (Reach) The reachability task evaluates if a
specific sub-goal can eventually be reached from the given
state by taking (possibly multiple) actions. This is a multi-
step reasoning task that can help avoid exploring unfeasible
options. To maximize the efficiency of LLMs, it is crucial
to detect unreachable (sub)goals early on. This can avoid
unnecessary prompting and wasteful exploration, ensuring
that the LLMs are utilized effectively, especially when used
during search (Yao et al. 2023).

Reachability is PSPACE-hard to answer positively in gen-
eral (Bylander 1994) for a specific fact, since that would
require an evidence - a sequence of actions that achieves a
state where the specified facts hold. However, generating pos-
itive examples is easy, based on any action sequence, taking
the facts out of the end state. For negative examples, we ex-
plore multiple cases of unreachable facts and fact pairs. First,
existing planning methods (under)approximate the reacha-
bility with poly-time computable delete-relaxed reachability
(Hoffmann and Nebel 2001). Facts that are not delete-relaxed
reachable are therefore guaranteed not to be reachable. An-
other possible reason for a pair of facts that are individually
reachable not to be reachable in the same state is if they are
mutually exclusive (Lin 2004; Fišer and Komenda 2018). A
simple example of mutually exclusive facts in the ferry do-
main are (empty-ferry) and (on ?c), meaning that the ferry
cannot be empty and at the same time a car is on the ferry.
Third, static facts that are not true in the initial state will never
become true. For instance, c0 can never become a location,
so (location c0) is unreachable (not captured by the methods
in the first case, as they focus solely on non-static predicates).
The chain of thoughts for a positive example is based on a
sequence of actions that achieve the fact. For the negative
examples, the chain of thoughts follows the argument laid
out above for each of the cases. As in the previous case, the
MCQ is captured by choosing from the lists of positive and
negative options.

Action Reachability (AReach) In API-driven workflows,
the objective is typically presented as an instruction to exe-
cute a specific function (Qin et al. 2024). In these scenarios,
an LLM must identify the necessary prerequisites for execu-
tion and formulate a strategy to meet them. Therefore, it is
essential for LLMs to assess whether a given instruction is
executable from the provided starting point. We formulate
this ability as action reachability task.

The action reachability task is closely related to the atom
reachability. If an action model is available, then action reach-
ability is equivalent to the atom reachability over the precon-
ditions of the action. Therefore, this task requires an addi-
tional reasoning step about action preconditions. Similarly
to the atom reachability task, the positive examples are gen-
erated from action rollouts, while the negative examples are
generated by collecting actions with preconditions including
unreachable atoms according to two of the three cases men-
tioned above delete-relaxed reachability and mutexes. The
third case, unreachable static facts, was not used as often
creates non-sensible actions board car l0 at location c1. In-
stead, we added incorrect action templates for each action,
like “board the car c1 at location l0 into the airplane” or

“drive from location l0 to location l1”. Here as well, the chain
of thoughts are created in a similar manner, and the MCQ is
captured based on the positive and negative options lists.

Validation (Val) A body of research has advocated the use
of LLMs for validation and refinement (Shinn et al. 2023;
Gou et al. 2024; Madaan et al. 2023). In line with this re-
search, we propose a Validation task. Here, given an initial
state and a goal condition, the objective is to assess whether
the specified sequence of actions is valid, applicable, and
successfully achieves the intended goal.

There are essentially only four options in this case: (a)
the sequence is not valid, (b) the sequence is valid, but not
applicable, (c) the sequence is valid, applicable, but does not
achieve the goal, and (d) the sequence is a plan. These are the
four options used for all MCQ for this task. Since the options
do not change, we generate four questions per sample, for
each of the options to be a correct answer. In the boolean case,
we create six different questions, with positive and negative
variants for the three cases of whether the sequence is valid,
applicable, and a plan. We generate the data for these ques-
tions from plans as follows. For the case (c), starting from
a plan, we replace a suffix with a random rollout, ensuring
that the goal is not achieved at the end of the rollout, but
the sequence remains applicable. For the case (b), we try to
replace an action on the sequence with an inapplicable action
(one whose precondition does not hold in the state), starting
from the end of the sequence. Once successful, we return the
sequence ending with the inapplicable action. For the case of
(a), we simply randomly choose an action on the sequence to
replace its template with an incorrect action template, as in
the previous task.

Justification (Just) A major criteria for plans to be consid-
ered reasonable is whether they include unnecessary actions.
In the realm of LLMs and API workflows, it is desirable to
avoid calling unnecessary APIs as well as reduce wasteful
explorations. Hence, it would be of immense value if LLMs
are able to identify whether an action is necessary. This cor-
responds to the justification task in planning literature.

The justification task reasons whether every action is actu-
ally needed on the plan. The problem was studied in the liter-
ature (Fink and Yang 1992; Salerno, Fuentetaja, and Seipp
2023) and found to be NP-hard in general. However, optimal
plans are known to have all their actions being justified and
checking whether a single action or a pair of consequent ac-
tions can be removed can be done in polynomial time. We
consider the following cases, for either a single action or a
pair of consequent actions in a plan: 1) a single action can
be removed from the plan and the remaining plan is still
a valid plan for the same problem 2) an action cannot be
removed from the plan 3) the consequent pairs of actions
can be removed from the plan 4) the immediate pairs of ac-
tion cannot be removed from the plan. Note that we truncate
the considered plans and only consider two actions after the
goal is reached except if the truncation leads to a non-plan.
Given a large set of plans, we consider the above 4 cases, and
generate positive and negative examples.
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Landmarks (Land) LLMs have shown to hallucinate or
deviate from the task when the trajectory is long (Huang et al.
2024). To alleviate this problem, various work has proposed
to use LLMs to decompose the goal into subgoals and achieve
each of these subgoals separately. To do this faithfully, it is
crucial for LLMs to be able to identify subgoals that are
necessary to achieve the goal. In planning literature such
subgoals are often called landmarks (Porteous, Sebastia, and
Hoffmann 2001). Landmarks are facts that must become true
sometime along every plan. So, the last task in ACPBench
evaluates LLMs ability to recognize landmarks.

While checking whether a fact is a landmark is PSPACE-
hard (Porteous, Sebastia, and Hoffmann 2001), there are
several methods that can find a subset of landmarks (Key-
der, Richter, and Helmert 2010; Hoffmann, Porteous, and
Sebastia 2004; Richter, Helmert, and Westphal 2008; Zhu
and Givan 2003). We use the so-called RHW method (Richter,
Helmert, and Westphal 2008). Further, negative evidence can
be obtained from a collection of plans - a fact that does not
appear on all of these plans is not a landmark. We sample
from positive and negative examples obtained that way and
construct two boolean questions and one MCQ. Here as well,
the chain of thoughts generated capture the described logic.

3.3 Data Generation
We use 25 PDDL problem files of varying sizes per domain.
These 25 tasks are partitioned into a training and a test set. For
each task, we use classical planners to generate a large col-
lection of 1000 plans (Katz and Lee 2023; Katz and Sohrabi
2020). With these plans, we sample the state space as follows.
First, given a set of plans, we gather the states along these
plans. Then, in order to obtain a diverse sample, we run ran-
dom rollouts from each of the states found. The number of
plans and the sample size are configurable parameters. In the
landmarks task described above, we also find plans for the
sampled states. To do that, we replace the initial state with
the sampled state in the planning problem instance and run
a top-k planner (Katz and Lee 2023). For finding mutexes,
we exploit lifted mutex groups implementations from Fišer
(2020). In this manner, we can potentially generate as many
examples as we want. But to keep the test set of reasonable
size, we generate only 10 examples per domain, per task.

4 Experiments
4.1 Evaluation of Pre-trained Language Models
We first analyse how pre-trained language models perform
on ACPBench. Table 2 presents the accuracy of all the lan-
guage models on the 7 ACPBench tasks. These results are
mean over 5 runs for all models; except GPT family mod-
els and LLAMA-3.1 405B (Dubey et al. 2024), which were
run once due to resource constraints. All LLMs were either
accessed using API or hosted locally using hugging face
transformer library on machines with 2 A100 80 GB GPU.
Note, accuracy of 50.00 on boolean questions indicates that
the performance of the model is as good as a random guess.
As all the MCQs in the datasets have 4 options, accuracy
less than 25.00 indicates that the performance is worse than
random guess. To investigate the out-of-the-box performance,

**Question**: This is a ferry domain, where
the task is to transport cars from their
start to their goal locations, using a
ferry. Each location is accessible by
ferry from each other location. The cars
can be debarked or boarded, and the ferry
can carry only one car at a time. There
are 2 locations and 2 cars, numbered
consecutively. Currently, the ferry is at
l0, with the car c1 on board. The cars
are at locations as follows: c0 is at l0.
Is the following action applicable in
this state: travel by sea from location
l1 to location l0?
**Thoughts**: Let's think step by step.
Step 1: In order to apply the action travel
by sea from location l1 to location l0,
the following fact(s) must hold in this
state: The ferry is at l1 location.
Step 2: These facts do not hold in the
mentioned state.
So, the action is not applicable.
**Final Answer**: No.
**Question**: ...
**Thoughts**: ...
**Final Answer**: Yes.
**Question**: <context> + <question>
**Thoughts**: Let's think step by step.

Figure 3: Example of the COT prompt.

we restrict the evaluation to single turn COT prompting with
two in-context examples. An example prompt for the Bool
applicability question is shown in Figure 3.

Notably, LLAMA-3.1 405B and GPT-4o consistently out-
perform other models on these tasks, although they do not al-
ways achieve the top performance. When it comes to smaller
open-sourced models, Codestral 22B stands out for its ex-
ceptional performance on boolean questions, while Mixtral
8x7B excels in handling multi-choice questions. However,
both of them lag significantly behind GPT-4o, which is the
best performer in these tasks. Action Reachability and Vali-
dation are the most challenging tasks for LLMs. Surprisingly,
the GPT family models are not even among top-3 for the Ac-
tion Reachablity task. Across all the tasks, GPT-4o performs
best for boolean and LLAMA-3.1 405B performs best for
multi-choice questions.

Figure 4 displays a domain-wise analysis of the perfor-
mance of larger LLMs on multi-choice questions. The aver-
age performance of these top-5 models is shown in Figure 4
as the dotted line in black. This indicates that across models
no specific domain seems too easy. However, Rovers, Floor-
Tile, Blocksworld, Alfworld and Satellite domains pose the
greatest challenges to LLMs, in that particular order.

4.2 Finetuning
Foundational models, and LLMs specifically, have shown to
improve performance on specific tasks when they are fine-
tuned for those tasks. So, next we investigate if finetuning
a language model provides any improvement. For this in-
vestigation, we keep aside the following 5 domains, Depot,
Goldminer, Satellite, Swap, and Alfworld, and generate a
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Model Applicability Progression Reachability Validation Action Reach. Justification Landmark Mean
Bool MCQ Bool MCQ Bool MCQ Bool MCQ Bool MCQ Bool MCQ Bool MCQ Bool MCQ

Phi-3 128K 66.15 33.08 68.46 53.85 52.31 26.15 50.77 19.23 53.33 32.50 49.23 33.85 49.23 46.92 55.53 34.75
Gemma 7B 63.23 28.62 64.92 31.08 53.08 23.08 46.92 20.0 55.67 34.50 50.77 36.46 27.54 30.31 51.80 28.93
Mistral 7B 61.54 32.31 73.08 38.46 53.08 28.46 47.85 17.69 65.00 19.17 48.46 30.00 35.38 33.08 55.00 28.67
Mistral I. 7B 63.08 31.54 61.54 46.92 61.54 33.08 52.15 36.15 45.83 34.17 43.08 29.23 57.69 50.77 55.45 37.30
Granite C. 8B 59.23 32.31 70.00 34.31 52.31 24.31 44.15 17.08 57.50 25.83 46.92 34.62 37.23 35.38 53.09 29.21
Granite 3.0 8B 72.31 26.92 73.08 53.85 53.08 24.62 53.08 20.00 45.83 30.83 49.23 34.62 42.31 34.62 55.56 32.21
Granite 3.0 I. 8B 76.92 30.00 73.85 57.69 53.08 36.92 55.38 34.62 58.33 44.17 70.77 31.54 51.54 43.08 62.84 39.72
LLAMA-3 8B 72.92 49.23 73.08 56.00 55.23 41.08 51.54 49.23 63.50 36.67 57.54 32.31 56.92 43.85 61.53 44.05
LLAMA-3.1 8B 65.38 56.92 63.85 47.69 53.08 33.85 60.00 37.69 42.50 28.33 46.92 45.38 33.85 40.00 51.46 41.52
Mixtral 8x7B 75.85 57.69 74.00 61.38 76.00 40.00 65.69 34.77 52.83 55.00 55.38 51.38 59.54 60.00 65.53 51.44
Codestral 22B 84.62 39.23 83.85 51.54 54.62 28.46 66.15 24.62 53.33 38.33 67.69 62.31 59.23 42.31 67.40 40.97
Mixtral 8x22B 80.77 37.69 72.31 54.62 50.00 42.62 37.69 16.92 58.50 27.83 43.08 44.62 44.77 45.23 55.63 39.25
Deepseek I. 33B 70.77 37.23 68.46 46.31 53.08 31.69 51.54 37.69 50.00 27.50 46.92 26.15 62.31 39.23 57.58 35.11
LLAMA C. 34B 80.77 42.31 73.08 43.85 53.08 25.69 50.15 28.46 53.17 33.33 55.38 35.38 46.92 40.62 59.02 35.71

LLAMA-2 70B 78.46 24.62 71.54 36.77 53.08 26.92 51.38 16.15 60.83 22.00 49.23 55.54 24.46 26.00 55.72 29.71
LLAMA C. 70B 74.77 36.15 54.77 52.92 48.62 23.69 40.0 17.69 49.67 28.83 46.92 31.54 37.08 42.31 50.90 32.87
LLAMA-3 70B 90.77 82.31 93.08 86.15 87.6982.31 78.62 56.62 60.50 63.00 62.31 85.38 78.15 64.77 78.71 74.30
LLAMA-3.1 70B 93.08 84.31 89.85 86.77 61.38 54.92 66.15 46.62 63.00 58.00 56.92 68.46 34.62 69.23 66.67 66.94
LLAMA-3.1 405B 95.38 86.92 93.0893.85 59.23 80.77 77.2362.92 65.00 65.00 90.0086.92 83.08 65.38 80.4977.42

GPT-4o Mini 90.77 73.85 95.38 79.23 80.77 39.23 67.69 46.15 54.17 21.67 77.69 70.00 76.92 67.69 77.74 56.50
GPT-4o 96.9289.23 94.62 90.00 79.23 76.92 61.54 53.85 57.50 52.50 88.46 80.77 95.3879.23 81.84 74.97

Table 2: Accuracy of 21 LLMs, (I)nstruct and (C)ode models, on 7 ACPBench tasks (boolean and multi-choice). The best results
are boldfaced, second best are underlined, and the best among the small, open-sourced models are double underlined. All
models were evaluated with two in-context examples and COT prompt. The right-most column is mean across tasks.

Figure 4: Comparison of 5 top performing LLMs on MCQ in
13 domains of ACPBench. The mean of performance across
these models is presented with dotted line in Black. The mean
line indicates that none of the domains are exceptionally easy.

training set for the remaining 8 domains. Then we pick one of
the small models, Granite-code 8B (Mishra et al. 2024), and
finetune it with QLoRA. The resulting performance improve-
ment is shown in Table 3a. As finetuned models have already
seen examples during training, we use only IO prompts with
the finetuned model. We finetuned Granite-code 8B available
on HuggingFace with two A100 80GB GPUs.

Upon finetuning, the average accuracy of the model im-
proves from 51.43% to 95.71% on boolean questions and
from 19.18% to 94.29% on multi-choice questions. Further,
Table 3b presents the performance on the remaining 5 unseen

domains. It is remarkable to observe such a significant im-
provement even on unseen domains; sometimes surpassing
the GPT-4o performance. This indicates that finetuning a
model, even on a separate domain, improves performance
on these tasks. The right-most column in Tables 3a and 3b
presents the performance of the best on that task LLM with
COT 2-shots prompting. As can be seen; Granite Finetuned
model outperforms the best of all models for most of the
tasks in the training domains. Even in testing domains, the
accuracy difference is significantly reduced upon finetuning.

4.3 Ablations
Prompt Style From previous section, it is clear that COT
2-shot yields better results than IO prompts for ACPBench
tasks. However, it is not clear whether COT or 2-shot ex-
amples provide the performance gain. To investigate this,
we perform the following ablation study. We compare four
prompt styles: (1) IO prompt, (2) Chain-of-Thought prompt
without in-context examples (COT), (3) IO prompt with two
in-context examples (IO 2-shots), and (4) Chain-of-Thought
with two in-context examples (COT 2-shots).2

We include Granite-code 8B base model, LLAMA-3 70B
(one of the top-performing open source model), and the Gran-
ite finetuned model. To have a fair comparison, we use 2-shot
examples from the training domains and only compare per-
formance on the testing domains for MCQ tasks. Figure 5
presents the results. For the two pretrained models, we see
that while COT 2-shots prompting yields better result than
IO, IO 2-shots prompting had the best performance. For fine-
tuned model, we see that neither COT nor 2-shots provide
any advantage; rather IO prompts yield the best results.

2Examples of prompts are included in the extended version.
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Task Base IO Base COT 2-shot Finetuned IO Best

App Bool 53.75 62.5 (+8.75) 98.75 (+45.0) 97.50
MCQ 15.0 36.75 (+21.75) 92.5 (+77.5) 90.00

Prog Bool 52.5 76.25 (+23.75) 97.5 (+45.0) 96.25
MCQ 22.5 33.25 (+10.75) 93.75(+71.25) 93.75

Reach Bool 47.5 52.5 (+5.0) 97.5 (+50.0) 87.50
MCQ 15.0 20.75 (+5.75) 98.75(+83.75) 82.5

Val Bool 45.0 40.5 (−4.5) 100 (+55.0) 78.75
MCQ 38.5 20.0 (−18.5) 87.5 (+49.0) 57.75

AReach Bool 45.0 56.25 (+11.25) 97.5 (+52.5) 65.75
MCQ 14.25 28.75 (+14.5) 95.0 (+80.75) 78.75

Just Bool 56.25 50.0 (−6.25) 97.5 (+41.25) 90.0
MCQ 16.25 35.0 (+18.75) 96.25 (+80.0) 82.5

Land Bool 60.0 41.25 (−18.75) 81.25(+21.25) 97.50
MCQ 20.0 18.5 (−1.5) 90.0 (+70.0) 71.25

Mean Bool 51.43 54.18 (+2.75) 95.71(+44.28) 81.07
MCQ 20.21 27.57 (+7.36) 93.39(+73.18) 77.68

(a) Training

Task Base IO Base COT 2-shot Finetuned IO Best

App Bool 50.0 54.0 (+4.0) 74.0 (+24.0) 96.00
MCQ 14.0 25.2 (+11.2) 62.0 (+48.0) 88.00

Prog Bool 50.0 60.0 (+10.0) 80.0 (+30.0) 94.00
MCQ 28.0 36.0 (+8.0) 82.0 (+54.0) 96.0

Reach Bool 46.0 52.0 (+6.0) 82.0 (+36.0) 88.00
MCQ 10.0 30.0 (+20.0) 56.0 (+46.0) 82.00

Val Bool 46.0 50.0 (+4.0) 80.0 (+34.0) 84.0
MCQ 26.0 12.4 (−13.6) 54.0 (+28.0) 71.2

AReach Bool 35.0 60.0 (+25.0) 82.5 (+47.5) 77.5
MCQ 5.0 20.0 (+15.0) 70.0 (+65.0) 57.50

Just Bool 42.0 42.0 (+0.0) 98.0 (+56.0) 96.0
MCQ 16.0 34.0 (+18.0) 80.0 (+64.0) 94.0

Land Bool 44.0 30.8 (−13.2) 72.0 (+28.0) 92.0
MCQ 20.0 62.4 (+42.4) 92.0 (+72.0) 94.0

Mean Bool 44.71 49.83 (+5.21) 81.21 (+36.5) 82.79
MCQ 17.00 31.43 (+14.43) 70.86(+53.86) 78.07

(b) Testing

Table 3: Comparison of the Granite-code 8B model (Base)
to Finetuned on (a) 8 training domains and (b) 5 domains of
ACPBench. Columns Base IO and Base COT 2-shot, presents
the accuracy values for the Base model with Input-Output
prompts (IO) and COT prompt with two in-context examples
(COT 2-shot), resp. Finetuned IO presents model accuracy
with IO prompts. The values in parentheses represent the
improvement over the base model w/ IO prompts. The right-
most column (Best) presents the the best LLM with COT
2-shot on training and test domains, resp. Best results bolded.

Generalization ACPBench consists of tasks that are cru-
cial for effective, robust and reliable planning. Improving
performance on ACPBench should improve LLM’s abil-
ity to reason about these tasks, and hence should improve
LLM’s ability to generate plans. To verify this hypothesis,
we compare the Granite-code Base 8B model and Gran-
ite finetuned model on plan generation task (t1) in Plan-
Bench (Valmeekam et al. 2023a). Table 4 presents the results,

Figure 5: Comparison of different prompt styles on two pre-
trained models: Granite 8B and LLAMA-3 70B, and Granite
finetuned model for MCQ tasks in 5 testing domains.

Domain Base Finetuned LLAMA-3 70B

Blocksworld (600) 24 44 57

Logistics (285) 14 15 14

Table 4: Comparison of Granite-code Base, Finetuned, and
LLAMA-3 70B model on PlanBench Dataset.

Action
Applicability

Progression

Atom
Reachability

Validation

Action
Reachability

Justification

Landmark

0
0.2

0.4
0.6

0.8
1

LLAMA-2 7OB LLAMA-3 70B LLAMA-3.1 70B LLAMA-3.1 405B

Figure 6: LLAMA versions comparison on ACPBench tasks.

showing improved plan generation of Granite model fine-
tuned with QLoRA (Dettmers et al. 2023) on ACPBench
tasks for 8 training domains.

Performance over Time One of our major motivations to
generate and release the ACPBench collection is to encour-
age researchers to address the poor performance on these
tasks and build models that are capable to perform reasoning
required for better planning. We believe that without such
benchmarks, the progress toward this goal is ad-hoc. We
verify our belief by comparing the LLAMA model family’s
performance on ACPBench tasks over the past 6 months
to see if there’s been an improvement. Figure 6 presents
the performance of LLAMA-2 70B, LLAMA-3 70B and
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Task o1-preview o1-mini
Bool MCQ Bool MCQ

Applicability 93.08 95.38 90.77 76.92
Progression 97.69 96.15 91.54 88.46
Reachability 86.92 86.15 84.62 68.46
Validation 90.00 63.08 81.54 56.15
Action Reach. 72.50 85.00 55.83 70.00
Justification 88.46 89.23 80.00 83.85
Landmark 98.46 96.15 91.54 83.08
Mean 89.59 87.31 82.26 75.27

Table 5: o1 Reasoning Model performance on ACPBench.

LLAMA-3.1 70B and 405B on ACPBench tasks. We see that
there is a significant jump in performance between LLAMA-
2 and LLAMA-3. However, the difference in performance
of LLAMA-3 70B and LLAMA-3.1 405B is not significant.
This highlights the need for benchmarks that systematically
captures the reasoning ability required for planning.

4.4 Reasoning Model: OpenAI o1
Recently, OpenAI released a series of LLM-based reasoning
models called OpenAI o1 (OpenAI 2024b), that show signifi-
cant improvement over GPT-4o on benchmarks that require
reasoning. Although OpenAI o1 preview and mini are made
available via similar APIs as previous LLMs, they do not
truly fit the LLM category; rather, they are a system (or an
agent) that makes multiple calls to LLMs before providing
an answer. They are hence referred as Large Reasoning Mod-
els (Valmeekam, Stechly, and Kambhampati 2024). Table 5
presents the performance of OpenAI o1 on ACPBench tasks.
While we acknowledge the difference between LLMs and
Reasoning Models, we are interested in understanding the ad-
vantage provided by the reasoning over the the LLMs. To that
end, Figure 7 shows the performance difference of OpenAI o1
models from the best performing LLMs. Our results indicate
that OpenAI o1 models fail to yield performance gains for
boolean questions, but demonstrate notable improvements
on MCQs. Specifically, OpenAI o1 preview consistently per-
forms better or equal to the best performing model for MCQs.
The responses for MCQ tasks suggests that OpenAI o1 mod-
els consider each option individually, perform a case-by-case
analysis, and only then select an option.

We would like to reiterate that while Figure 7 compares
performance of OpenAI o1 with LLMs, the comparison is
not even-handed due to below mentioned reasons:

• All our LLM experiments had a generated token limit
of 1024; OpenAI o1 models did not have that limit. On
average the number of tokens generated by OpenAI o1
preview for MCQ tasks, where we see the maximum im-
provement, was 5705 (this includes the completion token
(3164) and the reasoning token (2542)).

• LLM evaluations are based on a single generation. We did
not evaluate multi-turn prompts (such as self-consistency
or self-reflection). OpenAI o1 models seem to internally
make multiple calls to an LLM.

The OpenAI o1 evaluation is approx. 20 times more expen-

(a) Bool

(b) MCQ

Figure 7: Comparing OpenAI o1 models with the best LLM.
Positive difference shows OpenAI o1 model performing bet-
ter than the best of the LLMs. Negative difference is when
OpenAI o1 model lags behind the best LLM.

sive than of GPT-4o. It remains to be seen if a multi-turn
prompting of an open-sourced LLM like LLAMA-3.1 can
achieve similar improvement with lower cost.

5 Discussion and Future Work
In this work, we introduce ACPBench—a collection of
datasets to evaluate the ability of LLMs to reason about ac-
tion, change and planning. By evaluating 21 state-of-the-art
LLMs of varying size, we find these models underperform,
even the largest ones, especially on tasks such as plan vali-
dation and action reachability. On the other hand, we show
that finetuning a small language model, Granite 8B, can im-
prove its reasoning ability to bring it on par with the best
performing models. Further, we observe that the fine-tuned
model exhibits remarkable generalization ability to unseen
domains in ACPBench as well as to a different task in Plan-
Bench. Further, our investigation with OpenAI o1 reasoning
model indicates that OpenAI’s multi-turn approach yields
improvements for multi-choice questions but fails to make
an impact on boolean questions in ACPBench.

Performance of LLMs is known to be sensitive to prompt
text as well as prompt style. Hence, it is possible to elicit
better performance from each of these models with prompt
engineering. In our work we do not modify prompts across
models – our objective in the evaluation is to set a baseline.
We hope our benchmark serves as a useful resource for im-
proving LLM abilities. We encourage creative solutions (not
limited to prompt engineering) to improve LLM performance
across various tasks of ACPBench.
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