
Partially Observable Hierarchical Reinforcement Learning with AI Planning
(Student Abstract)

Brandon Rozek1, Junkyu Lee2, Harsha Kokel2, Michael Katz2, Shirin Sohrabi2

1Rensselaer Polytechnic Institute
2IBM Research AI

rozekb@rpi.edu, {Junkyu.Lee,harsha.kokel,michael.katz1}@ibm.com, ssohrab@us.ibm.com

Abstract

Partially observable Markov decision processes (POMDPs)
challenge reinforcement learning agents due to incomplete
knowledge of the environment. Even assuming monotonic-
ity in uncertainty, it is difficult for an agent to know how and
when to stop exploring for a given task. In this abstract, we
discuss how to use hierarchical reinforcement learning (HRL)
and AI Planning (AIP) to improve exploration when the agent
knows possible valuations of unknown predicates and how
to discover them. By encoding the uncertainty in an abstract
planning model, the agent can derive a high-level plan which
is then used to decompose the overall POMDP into a tree of
semi-POMDPs for training. We evaluate our agent’s perfor-
mance on the MiniGrid domain and show how guided explo-
ration may improve agent performance.

Introduction
Current techniques in reinforcement learning (RL) attempt
to solve a partially observable problem by approximating
the Markovian state through a form of agent memory. This
is commonly a stack of sequential observations or hidden
units of a recurrent function approximator. Assuming that
uncertainty is monotonic, one strategy is to fully explore the
environment. However, there could be many irrelevant vari-
ables; leading to wasted exploration efforts. In this work, to
improve sample complexity, we examine the use of AI plan-
ning through a fully observable non-deterministic (FOND)
model to guide exploration for a given goal.

For example, consider an environment where an agent
navigates through rooms with locked doors shown in Fig-
ure 2a. To reach the goal location, shown in green, the agent
only needs a yellow key. An agent that is motivated to fully
explore the environment would first explore all the rooms
and then enter the goal location. In contrast, an AI planning
guided agent, would only explore the environment until it
finds the yellow key. By capturing the goal, possible valua-
tions of unknown variables, and some high-level transition
dynamics, an AI planning model can provide a plan for dis-
covering only the necessary information, and hence reduce
exploration efforts. We present an approach that leverages a
FOND planner to guide the exploration and execution of RL
agents to solve the POMDP task.

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Background
We address a sparse-reward, goal-oriented POMDP problem
represented as M = ⟨S,A, T, R,O, s0, G⟩, with state space
S , action space A, transition function T , a sparse reward
function R, observation space O, initial state so, and goal
condition G. The objective is to find the optimal policy π∗

which maximizes the expected return.
A FOND planning task is presented as Π =

⟨V ,O, s′0, s
′
∗⟩, where V is a finite set of state variables, O

is a finite set of operators which consists of preconditions
(pre(o)) and a list of deterministic effects often expressed in
the form eff(o) = oneof (eo,1 , . . . , eo,n). A planning state
s′ is a partial state over V . An operator o can be executed
at state s′t if s′t |= pre(o) and upon executing the opera-
tor an effect eo,i is non-deterministically chosen for the next
state s′t+1. Each eo,i is a set of conditional effects. Each con-
ditional effect is represented as ⟨c, l⟩ where effect-literals l
are applied to a state if the conditional-literals c are satisfied
(i.e. s′t |= c =⇒ s′t+1 |= l). Additionally, s′0 is the initial
state, and s′∗ is a partial state representing the goal states.

This work extends the Planning Annotated Reinforcement
Learning (PaRL) framework (Lee et al. 2022). A PaRL task
E is defined as a triple ⟨M,Π, L⟩ where M is a goal-
oriented MDP, Π is a SAS+ planning task, and L is a sur-
jective mapping from MDP states S to planning states S ′.
The PaRL task is solved by decomposing the MDP M into
semi-MDPs using the planning task Π and defining a sep-
arate option policy for each semi-MDP. For each operator
o ∈ O within Π there is a corresponding operator option
Oo := ⟨Io, πo, βo⟩ with Io := {s ∈ S|L(s) |= pre(o)}
and βo := {s ∈ S|L(s) |= (prv(o) ∪ eff(o))}. The pre-
vail prv(o) is the subset of variables in pre(o) that does not
appear in eff(o).

Proposed Approach
In order to extend the PaRL framework to handle partial
observability, we look at how to encode uncertainty in AI
planning, and from the model how to derive our options for
hierarchical reinforcement learning.

Modeling Uncertainty We do not seek to model the entire
POMDP using AI planning, but instead we look at capturing
the agent’s knowledge on the list of unknown predicates and
how it might discover them. To do this, we use the FOND

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

23635

(:action move-room
:parameters (?d - door ?r1 - room ?r2 - room)
:precondition (and (at-agent ?r1) (unlocked ?d) (

CONNECTED-ROOMS ?r1 ?r2) (LINK ?d ?r1 ?r2))
:effect (and
(not (at-agent ?r1)) (at-agent ?r2)
(forall (?k -key)
(when (not (entered-room ?r2))
(when (not (discovered ?k))
(oneof
; Yellow Key Present
(and (at ?k ?r2) (color ?k yellow) (discovered ?k) (

entered-room ?r2))
; Purple Key Present
(and (at ?k ?r2) (color ?k purple) (discovered ?k) (

entered-room ?r2))
; Key not present
(entered-room ?r2)

))))))

Figure 1: PDDL with discovery effects

planning model. The intuition is that in the incomplete ab-
stract level, the agent’s knowledge of unknown predicates
is fully observable, and non-deterministic effects encode the
potential discovery of subsets of these predicates.

For each predicate v ∈ V , if v ∈ s′0 then we say that
v is true in the initial belief state. Otherwise, we say that v
is either false or unknown. To disambiguate between false
and unknown, we make use of discovery predicates. These
special predicates are true when an agent has discovered a
subset of unknown state variables in the environment. For
example, the agent has a key within their field of view,
so it knows its color and location. We can model how an
agent might discover these unknown predicates by augment-
ing existing actions with discovery effects. Let eo,∗ repre-
sent the deterministic effects of an operator o before encod-
ing discovery. Then the discovery augmented od will have
eff (od) = oneof(eo,1, . . . , eo,n) where eo,∗ ⊂ eo,i. A dis-
covery effect is a conditional effect ⟨c, l⟩ with a couple ad-
ditional restrictions on c. First, a discovery effect can only
have its conditional-literals satisfied once. This is to pre-
vent cyclic policies in an attempt to obtain a desired non-
deterministic effect. In practice, we add ⟨⊤, co,f ⟩ to every
eo,i to account for this. Secondly, every state variable within
l must be unknown in s′ to prevent inconsistencies in the be-
lief state. Discovery predicates are used to track this. Since
it’s possible that an agent might not discover information af-
ter executing an option, l may be empty.

For example, for any given key in the MiniGrid environ-
ment, if we move to a room we have not visited before, then
the key can either be present and yellow, present and purple,
or not present in the room. The corresponding PDDL encod-
ing is shown in Figure 1. There (entered-room ?r2)
represents the co,f condition and (discovered ?k) is
the discovery predicate associated with the key color and lo-
cations.

Defining Options In the POMDP setting, the agent does
not have access to a state. In order to derive our planning
belief state s′, we need to pass a history of observations
h into a mapping function Lh. For each operator o ∈ O,
we have a corresponding operator option Oo = ⟨Io, πo, βo⟩.
The initiation set is similar to the PaRL setting and is de-

(a) (b)

Figure 2: (a) Example environment where it’s unnecessary to
explore the top left room in order to reach the goal. (b) Suc-
cess rate (y-axis) over training samples (x-axis) for HFond-
Plan, PPO, A2C (top to bottom)

fined as Io := {s ∈ S|Lh(h) |= pre(o)}. We adapt the ter-
mination set to account for issues of non-determinism. For
an operator o with non-deterministic effects, its execution
leads to multiple possible s′. To account for this, we termi-
nate when Lh(h) |=

∨
i prv(o) ∪ eo,i. The issue comes with

empty discovery effects. Lets say during the execution of o,
that Lh(h) |= eo,e where eo,e is an empty discovery effect.
The option terminates, however, the agent has not learned
anything additional about the relevant unknown predicate(s).
Including whether they don’t hold in the environment. It is
possible that at some later time step, the history of obser-
vations Lh(h

′) |= eo,i where i ̸= e. This will violate our
policy, since the compilation assumed a deterministic obser-
vation model and the discovery effects cannot execute more
than once. For our approach, we rely on replanning to cor-
rect this issue. There are alternate approaches, however, we
leave experimentation of those to future work.

Preliminary Evaluations and Conclusion
We evaluate our agent on an instance of the MiniGrid en-
vironment shown in Figure 2a. The agent only sees a 3x3
window in front of it and the key locations and colors are un-
known. For our implementation we use the stable-baselines
library, and for the experiment we compare against two rein-
forcement learning agents PPO and A2C while keeping the
default hyperparameters for each. For all agents, we pass in
a stack of the last ten observations and set the horizon H to
2048. For our agent, we provide a −0.9 reward on the termi-
nal state of options that violate the prevail, and a reward of
1 − 0.4 ∗ (to/H) on option success where to is the number
of steps taken within that option. We generate 4000 envi-
ronmental seeds for each run, 3900 for training and 100 for
evaluation. We perform ten runs with different starting seeds
for each agent.

Overall our preliminary evaluation in Figure 2b shows
that the existence of a discovery model helps guide the ex-
ploration process of a HRL agent and may lead to improved
performance in a partially observable task.

References
Lee, J.; Katz, M.; Agravante, D. J.; Liu, M.; Tasse, G. N.; Klinger,
T.; and Sohrabi, S. 2022. Hierarchical Reinforcement Learning
with AI Planning Models. arXiv:2203.00669.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

23636

