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Abstract
Oversubscription planning (OSP) is the problem of finding
plans that maximize the utility value of their end state while
staying within a specified cost bound. Recently, it has been
shown that OSP problems can be reformulated as classi-
cal planning problems with multiple cost functions but no
utilities. Here we take advantage of this reformulation to
show that OSP problems can be solved optimally using the
A∗ search algorithm, in contrast to previous approaches that
have used variations on branch-and-bound search. This al-
lows many powerful techniques developed for classical plan-
ning to be applied to OSP problems. We also introduce novel
bound-sensitive heuristics, which are able to reason about
the primary cost of a solution while taking into account sec-
ondary cost functions and bounds, to provide superior guid-
ance compared to heuristics that do not take these bounds into
account. We propose two such bound-sensitive variants of ex-
isting classical planning heuristics, and show experimentally
that the resulting search is significantly more informed than
with comparable heuristics that do not consider bounds.

Introduction
Oversubscription planning (OSP) problems are a family
of deterministic planning problems. In contrast to classical
planning, where a set of hard goals is specified and the plan-
ner searches for a minimal (or low) cost plan that reaches a
state in which all of the goals are made true, oversubscrip-
tion planning specifies a utility function that describes the
benefit associated with achieving different possible states,
and asks for a plan that achieves as high a utility as possible,
but whose cost does not exceed a set bound (Smith 2004).

While domain-independent classical planning approaches
have increasingly standardized around variations on A∗

search and heuristics that are automatically extracted from
the problem description (Bonet and Geffner 2001; Keyder
and Geffner 2008; Haslum and Geffner 2000; Edelkamp
2001; Helmert et al. 2014; Helmert and Domshlak 2009),
OSP has generally been solved with branch-and-bound al-
gorithms and heuristics that compute an admissible esti-
mate of the utility achievable from a state. In the context
of OSP, an admissible estimate is one that does not under-
estimate the utility achievable from a state. In order to ob-
tain these estimates, recent approaches often adapt classical
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planning techniques such as landmarks (Mirkis and Domsh-
lak 2014; Muller and Karpas 2018) or abstractions (Mirkis
and Domshlak 2013), and enhance them with reasoning that
is specific to the context of OSP, such as the knowledge that
there always exists an optimal plan that ends with a utility-
increasing action, or that the cost bound for the problem can
be reduced under specific conditions to aid the search algo-
rithm in detecting that improving over the currently achieved
utility is impossible. Though solving OSP tasks with A∗

search would enable the integration of various search prun-
ing techniques used in classical planning (Alkhazraji et al.
2012; Pochter, Zohar, and Rosenschein 2011), no previous
approach was able to do so.

In contrast to these approaches, we show that general
methods from classical planning, including A∗ search, can
be used in the OSP setting. This previously turned out to be
the case for the related net-benefit planning problem, where
classical planners solving a compiled version of the prob-
lem with action costs but no utilities were shown to out-
perform planners designed specifically for that task (Keyder
and Geffner 2009). Here, we use a similar, recently proposed
compilation that converts OSP problems into classical plan-
ning problems with multiple cost functions but no utilities
(Katz et al. 2019a). In addition, we demonstrate that existing
classical planning heuristics can be used to guide the search
for optimal plans. While these heuristics are typically un-
informative when applied to the compilation out-of-the-box
(ignoring the secondary cost function), we show how they
can be modified (without any specific reasoning about utili-
ties) to render them sensitive to the secondary cost functions
and bounds that are introduced by the compilation. Our ex-
periments with A∗ and the newly introduced estimators that
we refer to as bound-sensitive heuristics show that they lead
to informed searches that are competitive with, and often
outperform, the state of the art in heuristic search for optimal
OSP. We now briefly review the various flavors of planning
that we consider in this work, and introduce the formalisms
by which we describe them.

Background
We describe planning problems in terms of extensions to the
SAS+ formalism (Bäckström and Nebel 1995). A classical
planning task Π = 〈V ,O; sI , G, C 〉 is given by a set of
variables V , with each variable v ∈ V having a finite do-



main dom(v), a set of actions O, with each action o ∈ O
described by a pair 〈pre(o), eff(o)〉 of partial assignments to
V , called the precondition and effect of o, respectively, ini-
tial state sI and goal condition G, which are full and par-
tial assignments to V , respectively, and the cost function
C : O → R0+. A state s is given by a full assignment to V .
An action is said to be applicable in a state s if pre(o) ⊆ s,
and sJoK denotes the result of applying o in s, where the
value of each v ∈ V is given by eff(o)[v] if defined and s[v]
otherwise. An operator sequence π = 〈o1, . . . , ok〉 is appli-
cable in s if there exist states s0, · · · , sk such that (i) s0 = s,
and (ii) for each 1 ≤ i ≤ k, oi is applicable in si−1 and
si = si−1JoiK. We refer to the state sk by sJπK and call it the
end state of π. An operator sequence π is a plan for a classi-
cal planning problem if it is applicable in sI andG ⊆ sIJπK.
The cost of a plan π is given by C(π) =

∑
o∈π C(o); the goal

of optimal classical planning is to find a plan with minimal
cost. We refer to a pair v, ϑ ∈ dom(v) as a fact and denote
it by 〈v, ϑ〉. We sometimes abuse notation and treat partial
assignments as sets of facts.

An oversubscription planning (OSP) problem is given by
ΠOSP = 〈V ,O, sI , C , u,B〉, where V ,O, sI , and C are as in
classical planning, u:(〈v, ϑ〉)→R0+ is a non-negative valued
utility function over variable assignments (facts), and B is a
cost bound for the plan, imposing the additional requirement
that only plans π such that C(π) ≤ B are valid. The utility
of a plan π is given by

∑
〈v,ϑ〉∈sIJπK u(〈v, ϑ〉); the objective

of OSP problems is to find valid plans with maximal utility.
A multiple cost function (MCF) problem is given by

ΠMCF = 〈V,O, sI , G, C0,C 〉, where V , O, sI , and C0 are
as in classical planning, C0 is the primary cost function, and
C = {〈Ci,Bi〉 | 1 ≤ i ≤ n} is a set of n secondary cost
functions Ci : O → R0+, and bounds, both non-negative.
Valid plans for MCF planning problems fulfill the condition
Ci(π) ≤ Bi for all secondary cost functions, and optimal
plans for MCF planning have minimal primary cost C0(π).
In this paper we limit our discussion to MCF problems with
a single secondary cost function, i.e. n = 1, as this is suffi-
cient to represent the OSP problems that we consider.

Reformulating OSP Problems
It has recently been shown that an OSP problem can be com-
piled into an MCF planning problem with a single secondary
cost function that corresponds to the cost function C of the
original problem, and is constrained to not exceed the spec-
ified bound B (Katz et al. 2019a). The primary cost function
for the problem, or the cost function to be optimized, re-
sults from compiling the utilities from the original problem
into costs. Two different compilations have been proposed
for this task. The first of these is the soft goals compilation,
which adds a new hard goal to the problem for each vari-
able v that has some value ϑ ∈ dom(v) with a non-zero
utility, along with actions that are able to achieve this hard
goal at different costs. The other is the state-delta compila-
tion which does not introduce any new variables or actions,
but instead encodes in the cost of each action the change
in state utility that results from applying it. Here we con-
sider only the soft goals compilation, as the state-delta com-

pilation introduces negative action costs that A∗ and exist-
ing classical planning heuristics are not designed to handle.
Note, however, that our methods do not depend on the spe-
cific choice of compilation, as long as they remove utilities
from the problem and do not introduce negative action costs.

The soft goals compilation was originally introduced in
the context of net-benefit planning. Net-benefit planning is
similar to oversubscription planning in that it introduces a
utility function over the set of states, but differs in that it
does not specify a bound on plan cost, having instead as its
objective the maximization of the difference between utility
and cost (Keyder and Geffner 2009). This compilation can
be applied in the OSP setting to result in an MCF planning
problem (Katz et al. 2019a, Definition 2):

Definition 1 Let ΠOSP = 〈V ,O, sI , C , u,B〉 be an over-
subscription planning task. The soft goals reformulation
Πsg

MCF = 〈V ′, O′, sI , G′, C0, {〈C ′,B〉}〉 of ΠOSP is an MCF
planning task, where
• V ′ = {v′|v ∈ V }, with

dom(v′) =

{
dom(v) ∪ {gv} umax(v) > 0

dom(v) otherwise,
• O′ = O ∪ {ov,ϑ = 〈{〈v, ϑ〉}, {〈v, gv〉}〉 | ϑ ∈
dom(v), v ∈ V, umax(v) > 0}

• G′ = {〈v, gv〉|v ∈ V, umax(v) > 0},

• C0(o) =

{
0 o ∈ O
umax(v)− u(〈v, ϑ〉) o = ov,ϑ,

• C ′(o) =

{C(o) o ∈ O
0 otherwise,

with umax(v) := maxϑ∈dom(v) u(〈v, ϑ〉) denoting the maxi-
mum utility over the values of the variable v.

In the reformulated problem, only the ov,ϑ actions for
which ϑ is not the maximum utility value of v have posi-
tive primary costs. These actions make explicit that a partic-
ular utility will not be achieved, and that the plan has instead
chosen to achieve the associated hard goal gv by accepting
a cost penalty equal to the difference between the maximum
achievable utility for that variable and the current utility. The
primary cost of a plan π for the reformulated problem is then
given by

∑
v∈V umax(v)−∑f∈sIJπK u(f).

While this compilation is sound as stated, two further op-
timizations can be made to reduce the state space of the
resulting compiled problems. First, an arbitrary ordering
can be introduced over V to ensure that the gv values are
achieved in a fixed sequence, to avoid searching over differ-
ent orderings. Second, a new precondition fact that is deleted
by the ov,ϑ actions can be added to the original domain ac-
tions to ensure that ov,ϑ actions happen only at the end of
the plan and are not interleaved with the original domain
actions. We make use of both of these optimizations in the
experimental results presented here.

A∗ for MCF Planning Problems
The A∗ algorithm extends blind search techniques such as
Dijkstra’s algorithm by allowing the incorporation of ad-
missible (non-overestimating) heuristics (Hart, Nilsson, and
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Figure 1: An OSP problem based on the VISIT-ALL domain.

Raphael 1968). In each iteration of its main loop, A∗ picks a
node n to expand with minimal f(n) = g(n) + h(n) value,
where g(n) is the cost of the path to n, and h(n) is an admis-
sible estimate of the remaining cost to the goal. An optimal
solution to the problem is found when a node n with mini-
mal f(n) value is a goal node.

To adaptA∗ to the MCF planning setting, we store at each
node n a set of accumulated path costs gi(n) resulting from
each of the secondary cost functions C1, . . . , Cn, in addition
to the accumulated primary cost g0(n). When a node is taken
from the priority queue and expanded, generated successor
nodes for which any gi(n) > Bi can be immediately pruned,
as all Ci are assumed to be non-negative, and they cannot
constitute valid prefixes for solution paths.

One key optimization used in modern A∗ implementa-
tions in the classical setting is duplicate detection, which
allows states that are rediscovered during search to be dis-
carded, if the new g value exceeds the cost of the path to
the state that was previously found, or to be updated with a
new parent, if the cost of the new path is less. In the MCF
setting, care must be taken to ensure that newly discovered
nodes are discarded (or replace existing nodes), only when
they are dominated by (or dominate), the existing node in
all cost dimensions. While the only necessary property of
the open list from a correctness perspective is that it order
nodes by increasing primary f(n) value, the choice of a sec-
ondary ordering heuristic plays a role here: an ordering that
causes a dominating node to be generated first and enables
subsequently generated nodes to be immediately discarded
as dominated results in superior performance. In our imple-
mentation of the algorithm, we therefore use an open list that
orders nodes by increasing gi(n) value when their primary
f(n) values are the same.

Bound-Sensitive Heuristics
While any admissible heuristic can be used to guide search
in MCF planning, classical planning heuristics that ignore
bounds entirely are typically extremely uninformative. Con-
sider the problem shown in Figure 1: the agent is initially
at l0, and can obtain a utility of 10 by visiting each of the
locations l1 and l2. The costs of the actions move(l0, l1) and
move(l1, l2) are both 1. In the compiled MCF version of
this problem, each of the hard goals associated with the soft
goals visited(l∗) can be achieved in two ways: with a 0-cost
action that requires the location to have actually been visited,
or with an action with cost 10 that has no preconditions. A
naive heuristic that ignores the bound but is otherwise opti-
mal will therefore give an estimate of 0, as both visited(l1)
and visited(l2) can be made true if there are no limits on the
agent’s movement. If, however, B = 1, the optimal C0 cost
at l0 is 10, as l2 cannot be reached with cost ≤ B1 and the

agent must use the onot-visited(l2) action to achieve the asso-
ciated hard goal with a cost of 10. Similarly, if B = 0, the
C0 cost of the optimal plan is 20, since C1 for all available
actions exceeds the bound B. In practice, it turns out that
the OSP versions of many classical planning problems have
similar behavior: their state spaces are strongly connected,
so any variable assignment can be achieved from any state,
and classical planning heuristics that ignore bounds are no
more informed than blind search.

In order to obtain estimates that take secondary cost
bounds into account and can guide heuristic search towards
feasible solutions, we therefore introduce bound-sensitive
heuristics. In the following, we use b = 〈b1, . . . ,bn〉 to
denote a vector consisting of the available secondary cost
bounds.

Definition 2 (Perfect bound-sensitive heuristic) Given an
MCF planning problem ΠMCF = 〈V,O, sI , G, C0,C 〉, the
perfect bound-sensitive heuristic h∗(s, b) for a state s and
cost bounds b is given by the minimal primary cost C0(π) of
a plan π for s such that Ci(π) ≤ bi for i = 1, . . . , n.

By analogy with standard admissible heuristics, an ad-
missible bound-sensitive heuristic is a non-overestimating
bound-sensitive heuristic:

Definition 3 (Admissible bound-sensitive heuristic)
Given an MCF planning problem ΠMCF =
〈V,O, sI , G, C0,C 〉, an admissible bound-sensitive
heuristic h(s, b) is a heuristic h such that h(s, b) ≤ h∗(s, b)
for all states s and cost bounds b.

Any classical planning heuristic that completely ignores
Ci and Bi can be thought of as an admissible bound-sensitive
heuristic that assumes b = ∞. As the value of b decreases,
the value of h∗(s,b) can only increase. In general, it is use-
ful to keep in mind the following property:

Theorem 1 For all states s and cost bounds b, b′ such that
b ≤ b′ (where ≤ is interpreted as a pairwise comparison),
h∗(s, b) ≥ h∗(s, b′).

Proof sketch: This follows from any plan π for s such that
Ci(π) ≤ bi also having the property that Ci(π) ≤ b′i for
i = 1, . . . , n since b ≤ b′, while the opposite is not the
case.

Theorem 1 applied to MCF planning problems obtained
from the soft goals compilations of OSP problems states that
for any s, decreasing b increases h∗(s,b), and decreases the
achievable utility, since the primary cost here indicates the
utility that the plan must accept as unachievable through ov,ϑ
actions with C0(ov,ϑ) ≥ 0.

Bound-Sensitive hmax

The admissible classical heuristic hmax estimates the cost of
a set of facts F as the cost of the most expensive fact f ∈ F ,



and applies this approximation recursively to action precon-
ditions to obtain the cost of the goal (Bonet and Geffner
2001):

hmax
C (F, s) = max

f∈F
hmax
C (f, s)

hmax
C (f, s) =

{
0 f ∈ s

min
o∈achievers(f,s)

hmax
C (o, s) otherwise

hmax
C (o, s) = C(o) + hmax

C (pre(o), s)

where hmax
C denotes the value of hmax computed with a cost

function C, and achievers(f, s) denotes the set {o | f ∈
eff(o)}. The hmax cost of a fact f that is not present in s is
computed by choosing an action o from this set that achieves
it with minimum possible cost. A bound-sensitive hmax

b can
easily be obtained by replacing the set of achievers used to
compute hmax

C0 with

achieversC0(f, s,b) = {o |f ∈ eff(o) ∧∧
i=1,...,n

hmax
Ci (o, s) ≤ bi}

where actions o for which any estimate hmax
Ci (o, s) exceeds

bi are not considered. Note that due to the admissibility of
hmax, this restriction of the set of achievers is sound but not
complete: it is guaranteed that any action removed from the
set of achievers cannot be used in a valid plan, but there may
be additional actions that cannot be achievers but are not
pruned by the heuristic. In general, any admissible estimate
hmax
Ci (o, s) could be used to compute achieversC0(f, s), but

we have chosen hmax here for simplicity.

Theorem 2 Bound-sensitive hmax
C0 using any admissible

heuristic h′ to compute the achievers set is an admissible
bound-sensitive heuristic.

Proof sketch: This follows from the fact that an admissi-
ble heuristic h′ will only remove from the set of achievers
those whose preconditions are provably unreachable within
the bound, and the admissibility of hmax itself.

Bound-Sensitive Merge-and-shrink
Merge-and-shrink heuristics hMS are a family of abstraction
heuristics that incrementally build a representation of the
full state space of a problem (Helmert et al. 2014). The con-
struction process begins with the set of transition systems
induced over each state variable; at each step, two transition
systems are selected to be merged and replaced with their
synchronized product. Since the transition systems need to
be represented explicitly in memory, before each merge step
a shrink step is performed on the two selected transition sys-
tems to enforce a user-specified threshold on the size of the
synchronized product. This is done by abstracting multiple
states in the current representation into a single state (and
thereby losing accuracy). The final output of the algorithm
consists of a single abstract transition system in which mul-
tiple states and actions from the original task are mapped

to a single state or transition, respectively. hMS(s) is then
given by the cost of a shortest path from the abstract state
representing s to the closest abstract goal state in the final
transition system. This estimate is admissible, as the cost of
the path in the final transition system cannot be larger than
the cost of the path in the original problem.

To formulate a bound-sensitive variant hMS
b of hMS, we

maintain for each transition in the abstract state space the
minimum Ci cost for i = 1, . . . , n among all of the tran-
sitions from the original task represented by the transi-
tion. The distance Ci between any two abstract states s, s′
then represents a non-overestimate of the secondary cost of
reaching s′ from s. A bound-sensitive heuristic value for a
state s and bound b can be computed as the minimum C0
cost of a path π from s to an abstract goal state sg whose Ci
cost in the abstract state space does not exceed bi, for any
i. The C0 cost of such a path can be computed with a mod-
ified version of Dijkstra’s algorithm that stores secondary
cost information for each node and discards nodes for which
Ci > bi for any i.

Theorem 3 Bound-sensitive hMS is an admissible bound-
sensitive heuristic.

Proof sketch: This follows from the fact that the secondary
costs used in the abstract state space are the minimums of
the secondary costs Ci of the represented transitions in the
original problem, and the proof of admissibility of standard
hMS.

While the hMS
b heuristic can be implemented by run-

ning Dijkstra’s algorithm in the abstract state space for each
heuristic computation, an important optimization when a
single secondary cost function is present (which is the case
in the compiled OSP problems that we consider) is to run
Dijkstra only once during preprocessing, and compute the
primary cost in the presence of different bounds on the sec-
ondary cost. This information can then be stored as a se-
quence of pairs 〈〈b0, c0〉, . . . , 〈bn, cn〉〉, where b0, . . . , bn is
strictly increasing bounds on the secondary cost function
and c0, . . . , cn are strictly decreasing heuristic estimates (re-
call Theorem 1). hMS(s, b) is then given by the first ci such
that bi ≤ b.

An important limitation that applies to both hMS
b and hmax

b
is that although they are admissible, they do not uphold cer-
tain guarantees made by their classical counterparts. While
classical hMS computes the optimal cost of a shortest path
in the abstract state space, the bound-sensitive version is not
able to compute the optimal shortest path cost in the pres-
ence of the bound, as this problem is NP-hard:

Theorem 4 The shortest paths problem for graphs in the
presence of bounds on even a single additional cost function
is NP-hard.

Proof sketch: By reduction from the knapsack problem
(Karp 1972), modeled as a sequence of nodes with two edges
between each pair of consecutive nodes. The edges in this
construction represent either including or omitting an item



25 50 75 100
Coverage BnB A∗ BnB A∗ BnB A∗ BnB A∗

elevators08 30 30 25 25 23 23 17 18
elevators11 20 20 19 19 18 18 14 15
miconic 96 96 65 65 55 55 50 55
mprime 35 35 28 27 24 24 19 19
mystery 29 29 27 26 21 21 18 18
openstacks14 20 19 15 13 7 7 3 3
parcprinter08 17 15 13 13 11 11 11 10
parcprinter11 13 12 9 9 7 7 6 6
parking11 11 10 1 1 0 0 0 0
parking14 14 12 4 4 0 0 0 0
pegsol08 30 30 30 30 29 28 27 27
pegsol11 20 20 20 20 19 17 17 17
pipes-tank 35 33 20 20 16 15 11 11
rovers 15 15 8 8 6 6 5 6
scanalyzer08 13 14 12 12 12 12 12 12
tetris14 17 17 14 14 11 10 9 9
tidybot11 20 20 20 20 18 17 13 13
tidybot14 20 20 18 18 14 13 6 6
transport08 17 17 15 15 12 13 11 11
transport11 15 15 11 11 8 9 6 6
transport14 13 14 9 9 9 9 7 7
trucks 13 12 8 8 6 6 5 5
visitall11 16 16 12 11 9 9 9 9
Sum other 661 661 494 494 413 413 375 375
Sum all 1190 1182 897 892 748 743 651 658

Table 1: Coverage results, BnB vs. A∗ with blind heuristic.

from the final set, respectively, and their secondary and pri-
mary costs are determined by the weight and value functions
for the knapsack objects.

In order to be polynomial, the hMS
b heuristic prunes from

the abstract state graph only the nodes for which the C1 costs
of all possible shortest paths exceed b1, while allowing paths
for which C1 > b1, as long as some path with C1 ≤ b1 to
the same node exists. A similar condition applies in the case
of the cost-sensitive version of hmax, and the heuristic is not
perfect in this setting even for problems with a single goal
and at most a single precondition per action.

Returning to the example shown in Figure 1, we note that
the cost-bounded versions of both hmax and hMS are able to
compute optimal costs for this problem. In the case of both
hmax
b and hMS

b (assuming a reasonable upper bound on the
number of abstract states), this is due to the fact that there is
a single path to each state in the compiled problem, and the
considerations discussed above do not apply.

Experiments
We implemented our approach in the Fast Downward plan-
ner (Helmert 2006), and evaluated it on a set of publicly
available OSP benchmarks (Katz et al. 2019b). The set of
benchmarks is taken from the International Planning Com-
petitions of recent years, in which goal facts are replaced
with utilities, and the bound set at 25%, 50%, 75%, or 100%
of the cost of the optimal or best known solution to each
problem. The baseline for our comparison is a blind branch-
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Figure 2: Expansions, BnB vs. A∗ with blind heuristic.

and-bound search, currently the best available configura-
tion of heuristic search for oversubscription planning that
we know of (Katz et al. 2019a). The experiments were per-
formed on Intel(R) Xeon(R) CPU E7-8837 @2.67GHz ma-
chines, with time and memory limits of 30min and 3.5GB.

We first compare the baseline branch and bound search to
our proposed approach of A∗ search on the MCF compila-
tion of the OSP task, using the blind heuristic for both algo-
rithms. Since the compilation introduces intermediate states
at which some but not all of the ov,ϑ have been applied,
we use a further optimization that avoids generating these
nodes and applies all of the ov,ϑ actions in a single step, re-
ducing the state space to that of the original OSP task. The
per-domain and overall coverage, as well as per-task node
expansions comparing the two blind search approaches are
shown in Table 1 and Figure 2, respectively. Overall, branch-
and-bound search performs better, but only by a small mar-
gin. Thus, A∗ search equipped with informative heuristics
has the potential to improve over the state-of-the-art method.

Our next experiment tests this hypothesis. We compare
blind A∗ search to A∗ using classical hmax and hMS, as well
as the two heuristics’ bound-sensitive variants introduced
here. For hMS, we use exact bisimulation with an abstract
state space threshold of 50k states and exact generalized la-
bel reduction (Sievers, Wehrle, and Helmert 2014), limiting
the time for abstraction creation to 600 seconds. Domain-
level and overall coverage comparison, as well as per-task
node expansions for the various configurations and problem
suites, are shown in Table 2 and Figure 3, respectively. We
now report some observations from these experiments.

• Blind branch-and-bound search usually slightly outper-
forms blindA∗ in terms of coverage, except for the 100%
suite. The difference between the two may come down
to the fact that A∗ must do extra work in ordering the
priority queue, while branch and bound search uses no
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Figure 3: Expansions up to the last layer, A∗ with blind heuristic vs. (a) bound-sensitive hmax
b and (b) bound-sensitive hMS

b ; A∗

with (c) hmax
b vs hmax and (d) hMS

b vs hMS.

ordering heuristic and can use a simple stack as its node
queue.

• Blind search performs better than informed search in
terms of overall coverage when bounds are low, but the
effect diminishes as the bound increases and it becomes
intractable to explore the full state space under the bound.
Looking on the number of domains in which each con-
figuration excels, for the 25% suite of problems, bound-
sensitive hmax is on par with the blind branch-and-bound,
both dominating all other approaches. Notably, bound-
sensitive hMS

b has the best overall coverage in the 50%,
75%, and 100% suites, where it solves 6, 35, and 43 more
problems than blind A∗, respectively. The other 3 heuris-

tics are generally outperformed by, or at best match the
performance of blind search. Further, hMS

b dominates all
other approaches in the number of domains it excels on,
for the 75% and 100% suites.

• Bound-sensitive heuristics are much more informative
than their classical variants, sometimes decreasing ex-
pansions by orders of magnitude. Compared to non-
bound-sensitive heuristics, they also almost always re-
sult in better coverage, sometimes by quite a large mar-
gin, for instance in the BLOCKSWORLD, MICONIC, and
WOODWORKING domains for hMS

b and the MPRIME,
SOKOBAN, and PARC-PRINTER domains for hmax

b . In
general, using bound-sensitive heuristics rather than clas-



25 50 75 100
BnB bl hmax

b hmax hMS
b hMS Total BnB bl hmax

b hmax hMS
b hMS Total BnB bl hmax

b hmax hMS
b hMS Total BnB bl hmax

b hmax hMS
b hMS Total

BnB - 7 11 26 20 11 1190 - 4 13 27 12 8 897 - 6 16 23 9 5 748 - 1 15 19 3 3 651
bl 2 - 11 24 18 8 1182 0 - 12 26 10 5 892 2 - 16 22 6 2 743 4 - 18 20 3 3 658
hmax
b 11 12 - 28 15 14 1170 8 10 - 31 10 11 881 13 13 - 23 8 11 726 11 10 - 13 7 10 631

hmax 0 0 0 - 4 2 1098 0 0 0 - 3 1 812 2 2 2 - 4 2 682 9 8 5 - 5 7 612
hMS
b 7 7 9 22 - 7 1178 9 10 12 30 - 9 898 19 20 23 33 - 18 778 18 17 28 30 - 17 701

hMS 0 0 8 20 11 - 1170 0 1 9 26 5 - 884 2 2 15 23 5 - 743 7 3 18 21 2 - 659

Table 2: Domain comparison of coverage for four domain suites defined by the 25%, 50%, 75%, and 100% of best known so-
lution cost for the classical planning task as an OSP task cost bound. Branch-and-bound with blind heuristic (BnB) is compared
to A∗ with blind heuristic (bl) and with other considered heuristics. The values represent the number of domains in which the
row configuration performs better than the column one. “Total” shows total coverage for the row configuration.

sical ones does not impose any penalty, with the former
almost always outperforming the latter.

• Limiting the resources available to hMS at construction
time proves to be essential to good performance in this
setting. Without the 600 second time limit, there are
a number of problems on which the planner times out
while trying to build the abstraction, and coverage drops
signicantly. However, our implementation is currently
unable to handle out of memory errors during the con-
struction of the heuristic. This occurs in 225 tasks for
the bound-sensitive and on 197 tasks for the non-bound
sensitive versions of the heuristic. In all of these cases,
the memory limit is exceeded in a matter of just a few
seconds. Interestingly, blind A∗ search is able to solve
35 and 15 out of these tasks, respectively. Further im-
provements in overall performance could therefore be
obtained with an implementation that deals with mem-
ory exceeded errors more gracefully.

Finally, see Speck and Katz (2021) for a comparison to a
recently proposed symbolic search based planner.

Related Work
One related area of research in the classical setting is that of
bounded-cost planning, where the planner looks for any plan
with (primary) cost below a given bound, similar to the treat-
ment of the secondary cost in the OSP setting. Approaches
proposed for this setting include dedicated search algorithms
(Stern, Puzis, and Felner 2011) and heuristics that take into
account accumulated cost and plan length at the current
search node (Thayer and Ruml 2011; Haslum 2013; Dobson
and Haslum 2017). These approaches work by preferentially
expanding nodes in areas of the search space that are likely
to have a solution under the cost bound. Optimal OSP, how-
ever, requires expanding all nodes that potentially lie on a
path to state with maximal utility. Furthermore, it cannot be
assumed that solutions necessarily achieve all soft goals.

Heuristics that are able to take into account bounds on
secondary cost functions have also been investigated in the
stochastic shortest path setting, where they were used as ad-
ditional constraints in an LP-based heuristic to consider lim-
itations on fuel or time resources (Trevizan, Thiébaux, and
Haslum 2017).

The problem of Resource-Constrained Planning (RCP) is
also related to the MCF setting (Nakhost, Hoffmann, and

Müller 2012). RCP is of equal expressivity to MCF planning
and there is a straightforward transformation from one to the
other. While the approach taken by Nakhost, Hoffmann, and
Müller (2012) does not guarantee optimality and therefore
cannot be compared to here, a follow up work (Wilhelm,
Steinmetz, and Hoffmann 2018) did consider optimality, al-
beit while ignoring resource consumption limitations. Thus,
these approaches are somewhat equivalent to the baselines
we compare to in our work.

Conclusions and Future Work
We have shown that a previously introduced compilation to
multiple cost function classical planning allows the A∗ al-
gorithm to be used to solve oversubscription planning prob-
lems, with out-of-the-box classical planning heuristics. Fur-
ther, we introduced a family of bound-sensitive heuristics
that are much more informed than their classical counter-
parts in this setting. Our experiments show that this approach
results in a state-of-the-art method for some bound settings
and domains.

For future work, we would like to adapt existing search
pruning techniques, such as partial order reduction (Alk-
hazraji et al. 2012) and symmetry pruning (Pochter, Zohar,
and Rosenschein 2011) to MCF planning to be used withA∗
search for OSP. Stubborn sets were recently defined for RCP
(Wilhelm, Steinmetz, and Hoffmann 2018). It is worth in-
vestigating how the definition would carry over to MCF, and
how our definition of bound-sensitive heuristics can be car-
ried over to RCP. Further, our methods may be applicable to
numeric planning problems in which the variables describe
resources that are strictly decreasing and can be expressed
in terms of secondary cost functions and associated bounds.
Bound-sensitive heuristics could provide a principled way
of reasoning about numeric variables in this context.

Another future research direction we would like to ex-
plore that builds on the methods introduced here is the use
of non-admissible heuristics for satisficing OSP. The method
by which bound-sensitive hmax is obtained is fairly general
and should be equally applicable for hadd or general relaxed
plan heuristics (Keyder and Geffner 2008). A second direc-
tion is the use of these heuristics in other planning settings in
which tradeoffs must be made between different cost func-
tions, e.g. minimizing fuel use in the presence of bounds on
time or vice versa in logistics problems.
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