
Bounding Quality in Diverse Planning

Michael Katz1, Shirin Sohrabi1, Octavian Udrea2

1 IBM Research
2 Dataminr

Abstract
Diverse planning is an important problem in automated plan-
ning with many real world applications. Recently, diverse
planning has seen renewed interest, with work that defines
a taxonomy of computational problems with respect to both
plan quality and solution diversity. However, despite the re-
cent advances in diverse planning, the variety of approaches
and the number of available planners are still quite limited,
even nonexistent for several computational problems. In this
work, we aim to extend the portfolio of planners for various
computational problems in diverse planning. To that end, we
introduce a novel approach to finding solutions for three com-
putational problems within diverse planning and present plan-
ners for these three problems. For one of these problems, our
approach is the first one that is able to provide solutions to
the problem. For another, we show that top-k and top qual-
ity planners can provide, albeit naive, solutions to the prob-
lem and we extend these planners to improve the diversity
of the solution. Finally, for the third problem, we show that
some existing diverse planners already provide solutions to
that problem. We suggest another approach and empirically
show it to compare favorably with these existing planners.

Introduction
Diverse planning is an important problem in AI Planning
with many practical applications that require generating
multiple plans rather than one. Example applications include
automated machine learning (Mohr, Wever, and Hüllermeier
2018; Katz et al. 2020), risk management (Sohrabi et al.
2018), automated analysis of streaming data (Riabov et al.
2015), and malware detection (Boddy et al. 2005). Diverse
planning is also important in the context of re-planning and
plan monitoring (Fox et al. 2006), under-specified user pref-
erences (Myers and Lee 1999; Nguyen et al. 2012), as well
as plan recognition and its related applications (Sohrabi, Ri-
abov, and Udrea 2016). In all these applications, the impor-
tance of generating multiple diverse plans is on par with be-
ing able to control solution quality, in part due to the way
many of these applications are modelled. As a prominent ex-
ample, in domains that exploit a variant of soft goals compi-
lation (Keyder and Geffner 2009), plans of low quality (high
cost) may choose to discard many otherwise reachable soft
goals (e.g., (Katz et al. 2020)).
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Most diverse planners developed over the last decade are
focused on addressing a particular diversity metric. For ex-
ample, while the diverse planner DLAMA focuses on find-
ing a set of plans by considering a landmark-based diver-
sity measure (Bryce 2014), other diverse planners such as
LPG-d, DIV, DFAA/DFAM, and A∗AA/A∗AM focus on finding
a set of plans with a particular minimum action distance
(Nguyen et al. 2012; Coman and Muñoz-Avila 2011; Vadla-
mudi and Kambhampati 2016). Goldman and Kuter (2015)
propose a diversity metric based on information retrieval lit-
erature. Roberts, Howe, and Ray (2014) suggest another di-
versity metric, introducing several planners, such as itA∗
and MQA, which, in addition to the diversity metrics, con-
sider plan quality. While all these planners implement the
chosen diversity metric and switching to another metric is
not trivial, the planners DFAA/DFAM and A∗AA/A∗AM work
in two phases: find a set of plans and choose a proper subset
of the found set. That is, plan subset selection is indepen-
dent of the diversity metric. In 2020, Katz and Sohrabi have
proposed a set of planners FI-diverse that separate the phase
of finding candidate plans from choosing a diverse subset of
these plans (Katz and Sohrabi 2020). Further, they provide
a tool for selecting a subset of plans for a variety of metrics
and computational problems (Katz and Sohrabi 2019).

The work by Katz and Sohrabi has also introduced a tax-
onomy of computational problems and classified existing
planners according to the problems they tackle. Most exist-
ing planners, according to that taxonomy, solve Satisficing
Diverse Planning (sat-k), where any sufficiently large set of
plans, k, is a solution, and the aim is to improve solution di-
versity. The planners LPG-d (Nguyen et al. 2012) and bFI
(Katz and Sohrabi 2020) tackle Bounded Diversity Diverse
Planning (bD-k), where a set of plans, k, is a solution only if
its diversity is above a certain specified bound b. Top-k plan-
ners (Katz et al. 2018b; Speck, Mattmüller, and Nebel 2020)
and top-quality planners (Katz, Sohrabi, and Udrea 2020),
while usually are not considered diverse planners, accord-
ing to the aforementioned taxonomy, return, albeit naive,
solutions to the Bounded Quality Diverse Planning (bQ-k)
problem, where plan set quality is required to be above a
specified bound. The planners DFAA/DFAM and A∗AA/A∗AM
(Vadlamudi and Kambhampati 2016) tackle Bounded Qual-
ity and Diversity Diverse Planning (bQbD-k), where both the
quality and the diversity of plan sets is bounded.



Despite these recent advances in diverse planning, the
pool of existing tools is still quite limited. The planners
DFAA/DFAM and A∗AA/A∗AM by Vadlamudi and Kambham-
pati (2016) are the only existing planners for bQbD-k. Top-
quality planners (Katz, Sohrabi, and Udrea 2020), although
technically solving bQ-k, do not aim at improving solution
diversity. No planners exist for other computational prob-
lems, such as Optimal Diversity Bounded Quality Diverse
Planning (bQoptD-k), where a solution corresponds to a set
of plans of best diversity among the sets of bounded quality.

In this work, we expand the pool of available planners for
diverse planning. We introduce novel planners for the three
aforementioned computational problems, bQ-k, bQbD-k, and
bQoptD-k, exploiting the recently introduced top-quality
planners. To that end, we introduce a novel quality met-
ric that reflects bounded plan costs, making a connection
between the costs of plans in a set and quality of a set
of plans. Focusing on the most popular diversity metric
(Nguyen et al. 2012; Coman and Muñoz-Avila 2011; Vad-
lamudi and Kambhampati 2016), for all three planners we
generate a subset of all plans of bounded quality as a first
step. In the second step, we select a subset of plans found
in the first step that constitutes a solution to the respective
computational problem. For bQ-k, as any sufficiently large
subset of plans is, albeit naive, a solution to the problem,
we extend these planners by using a previously suggested
greedy algorithm to choose a subset of plans of higher di-
versity (Katz and Sohrabi 2020). For bQbD-k, we show that
the decision problem that corresponds to the second step is
NP-complete and suggest using a previously proposed inte-
ger linear programming formulation. As the formulation was
not previously formally described, we describe it here and
prove that it provides a solution to bQbD-k. For bQoptD-k,
as the optimization problem in second step is NP-hard, we
propose using a novel mixed integer linear program to solve
it. We formally describe the program and prove that its solu-
tion can be used for solving bQoptD-k. Our approach is the
first one that is able to provide solutions to the problem.

Finally, we perform an empirical evaluation of our pro-
posed planners. For bQbD-k, we compare favorably to the
existing planners. For bQ-k, as no previous planners exist,
we test the quality of our solution by comparing it to the
quality of the optimal solution, obtained by our proposed
planner for bQoptD-k, where no previous planners exist ei-
ther. We show that the greedy algorithm works very well
on tested domains, producing results close to the optimum.
Our novel contributions, thus, include (i) the introduction of
the new quality metric that allows us to connect between the
cost of plans and quality of a set of plans, (ii) a concrete al-
gorithmic scheme that uses top quality planners for the first
step of finding a set of plans of bounded cost, (iii) computa-
tional complexity investigation of the second step, choosing
a proper subset from the found set, for various computational
problems, and (iv) introduction of the new mixed integer lin-
ear program for the resulting optimization problem.

Preliminaries and Related Work
In this work we follow the notation of Katz and Sohrabi
(2020). A SAS+ planning task (Bäckström and Nebel 1995)

is given by a tuple 〈V,A, s0, s∗〉, with V being a set of state
variables andA being a finite set of actions. Each state vari-
able v ∈ V has a finite domain dom(v) of values. A pair
〈v, ϑ〉 with v ∈ V and ϑ ∈ dom(v) is called a fact. A
(partial) assignment to V is called a (partial) state. Often
it is convenient to view a partial state p as a set of facts
with 〈v, ϑ〉 ∈ p if and only if p[v] = ϑ. A partial state p
is consistent with state s if p ⊆ s. s0 is the initial state,
and the partial state s∗ is the goal. Each action a is a pair
〈pre(a), eff (a)〉 of partial states called preconditions and ef-
fects. An action cost is a mapping C : A → R0+. An action
a is applicable in a state s if and only if pre(a) is consis-
tent with s. Applying a changes the value of v to eff (a)[v],
if defined. The resulting state is denoted by sJaK. An action
sequence π = 〈a1, . . . , ak〉 is applicable in s if there ex-
ist states s0, · · · , sk such that (i) s0 = s, and (ii) for each
1 ≤ i ≤ k, ai is applicable in si−1 and si = si−1JaiK. We
denote the state sk by sJπK. π is a plan iff π is applicable
in s0 and s∗ is consistent with s0JπK. We denote by P(Π)
(or just P when the task is clear from the context) the set of
all plans of Π. The cost of a plan π, denoted by C(π) is the
summed cost of the actions in π.

In regard to reasoning about sets of plans rather than indi-
vidual plans, there are two main measures defined on sets of
plans, quality and diversity. Previous work has introduced
one definition of quality, mirroring the International Plan-
ning Competition (IPC) quality metric for individual plans
(Katz and Sohrabi 2020).
Definition 1 Let P be the set of known plans of Π and let
P ′ ⊆ P be a subset of plans. The relative quality of P ′ with
respect to P is defined as

QP (P ′) :=
1

|P ′|
×
|P ′|∑
i=1

C(πi)

C(π′i)
,

where π1, . . . , π|P ′| and π′1, . . . , π
′
|P ′| are plans in P and

P ′, respectively, sorted in ascending order of their costs.
The relative quality of a set of plans is always between 0
and 1, being 1 if and only if there is no plan in P \P ′ that is
cheaper than any plan in P ′.

Switching now our attention to diversity metrics, pairwise
plan distance is defined by δ(π, π′) = 1− sim(π, π′), where
sim is a similarity measure, a value between 0 (unrelated)
and 1 (equivalent). The diversity of a set of plans, D(P ),
P ⊆ P is then defined as some aggregation (e.g., min or
average) of the pairwise distance within the set P . In this
work, we focus on one of the most popular similarity mea-
sures, stability (Fox et al. 2006; Coman and Muñoz-Avila
2011). Stability similarity measures the ratio of the number
of actions that appear on both plans to the total number of
actions on these plans, referring to plans as action multi-
sets (sets with repetitions). Given two plans π, π′, it is de-
fined as simstability(π, π′) = |A(π)∩A(π′)|/|A(π)∪A(π′)|,
where A(π) is the multi-set of actions in π. In what follows,
by Dma we denote the diversity metric computed as min-
imum over the pairwise plan distance under stability simi-
larity, the diversity metric implemented by multiple existing
diverse planners (Nguyen et al. 2012; Coman and Muñoz-
Avila 2011; Vadlamudi and Kambhampati 2016).



There is a variety of computational problems that fall un-
der the umbrella of diverse planning. In our work, focusing
on bounded quality problems, we follow the recently intro-
duced taxonomy (Katz and Sohrabi 2020).
Definition 2 (Diverse planning solution) Let Π be a plan-
ning task and P be the set of all plans for Π. Given a nat-
ural number k, P ⊆ P is a k-diverse planning solution if
|P | = k or P = P if |P| < k.
Definition 3 (Quality-bounded solution) Let Π be a plan-
ning task, Q be some quality metric, c be some bound, and
P be the set of all Π’s plans. Given a natural number k,
P ⊆ P is a c-quality-bounded k-diverse planning solution
if it is a k-diverse planning solution and Q(P ) ≥ c.

Bounded Quality Diverse Planning computational prob-
lem is defined as follows.

bQ-k : Given k and c,find a c-quality-bounded
k-diverse planning solution.

Definition 4 (Diversity-bounded solution) Let Π be a
planning task,D be some diversity metric, b be some bound,
and P be the set of all Π’s plans. Given a natural number k,
P ⊆ P is a b-diversity-bounded k-diverse planning solution
if it is a k-diverse planning solution and D(P ) ≥ b.

Bounded Quality and Diversity Diverse Planning compu-
tational problem is defined as follows.

bQbD-k : Given k, b, and c,find a c-quality-bounded
and b-diversity-bounded k-diverse planning solution.

Note that the definition above generalizes the previously
suggested search problem described in Equation 1 below and
implemented for the diversity metric Dma by Vadlamudi
and Kambhampati (2016).

cCOSTdDISTANTkSET : find P with P ⊆ P,
|P | = k, min

π,π′∈P
δ(π, π′) ≥ d,C(π) ≤ c ∀π ∈ P. (1)

Finally, Optimal Diversity Bounded Quality Diverse Plan-
ning optimization problem is defined as follows.

bQoptD-k : Given k and c,find a diversity-optimal
among c-quality-bounded k-diverse planning solutions,

where given a diversity metric D, a diversity optimal solu-
tion P is one that maximizesD(P ). In the presence of 0-cost
actions, the set of c-quality-bounded k-diverse planning so-
lutions can sometimes be infinite and might not even have
a maximal element, making the optimization problem not
well-defined. In order to make the problem well-defined, the
set of candidate plans might be restricted in a way that will
make the set of c-quality-bounded k-diverse planning solu-
tions be finite. In what follows we suggest one such restric-
tion. Let mπ(s) denote the number of instances of a state s
traversed by the plan π. A plan π is called C-cycle limited
if for all states s we have mπ(s) ≤ C + 1. Cycle-free plans
(analogously to cycle-free paths in graphs) are therefore 0-
cycle limited. Since the number of states for any planning
task is finite, given a constant C, a planning task Π has a
finite number of C-cycle limited plans. Therefore, in what
follows we restrict the set of all plans P to be the set of all
C-cycle limited plans, for a large constant C.

Bounded Quality in Diverse Planning
As stated above, in this work, we focus on the three com-
putational problems in diverse planning taxonomy of Katz
and Sohrabi (2020) that deal with bounded quality, bQ-k,
bQbD-k, and bQoptD-k. Our proposed solutions to these
three problems all have in common the first step – finding a
set of plans of bounded quality. While existing planners for
bounded quality diverse planning took the same approach
(Vadlamudi and Kambhampati 2016), they used planners
for the top-k planning problem (Riabov, Sohrabi, and Udrea
2014). Specifically, A∗AA/A∗AM apply the m-A∗ algorithm
(Flerova, Marinescu, and Dechter 2016), while DFAA/DFAM
apply the well-known branch-and-bound algorithm. We sug-
gest using a different approach, generating plans with a plan-
ner for a recently proposed unordered top-quality problem
(Katz, Sohrabi, and Udrea 2020). Switching to top-quality
allows to ensure that all plans of bounded cost are found.
Unordered top-quality allows disregarding plans that are re-
orderings of the found plans. For some diversity metrics, this
is highly beneficial, with pairwise diversity between a plan
and its reordering might be very low. Further, ignoring plan
orders reduces the computational effort required for finding
all plans of bounded cost.

The second step, after finding a set of plans of bounded
quality, is different for the different computational problems
that we consider in this work. For bQ-k, although any set of
k plans is a solution, we strive to obtain solutions of higher
diversity. Therefore, we apply a greedy algorithm that iter-
atively increases the set of plans by adding at each step the
candidate plan that increases the overall diversity score the
most, the same algorithm that was used for satisficing di-
verse planning (Katz and Sohrabi 2020). For bQbD-k and
bQoptD-k, we cast the problem of finding the subset of plans
as (mixed) integer linear programs. We describe these pro-
grams in detail in what follows. We start with the discussion
of the quality metric that we consider in this work.

Quality Metric
While we consider the planners DFAA/DFAM and A∗AA/A∗AM
to be solving the Bounded Quality and Diversity Diverse
Planning problem as defined by Katz and Sohrabi (2020),
the quality metric they maximize is not obvious. These plan-
ners consider the set P of plans of cost smaller or equal than
a given absolute bound value c, or maxπ∈P C(π) ≤ c. Al-
ternatively, the criterion can be expressed via Qa(P ) ≥ c′

for the quality measure

Qa(P ) =
c∗

maxπ∈P C(π)
(2)

where c∗ is the task’s optimal plan cost and c′ = c∗

c ∈ [0, 1].
Thus, the planners above solve the bQbD-k problem for the
quality metric Qa as in Eq. 2. Note, this quality measure
is different from the measure described in Definition 1, as
introduced by Katz and Sohrabi (2020), where the quality
of the set of plans is affected by the costs of all plans, not
only by the most expensive ones. The above proposed qual-
ity metric makes it possible to connect the quality metric to
the cost bound. Note also that while it is sufficient to require



c∗ to denote the cost of the cheapest known reference plan,
in some cases such measure might not satisfy the indepen-
dence of irrelevant alternatives (IIA) criteria (Seipp 2019).
Thus, we require c∗ to denote the task’s optimal plan cost.

Bounded Quality Planning
Let us consider now the (unordered) top quality planners
(Katz, Sohrabi, and Udrea 2020), that, given a multiplier
qm ≥ 1, return the set of all plans P such that ∀π ∈ P
we have C(π) ≤ qm × c∗, or a subset thereof with a sin-
gle representative for plans that differ only in the order of
their actions for the unordered case. For such sets, we have
Qa(P ) ≥ 1

qm
, and therefore these planners can be used to

derive solutions of bounded quality according to the qual-
ity metric Qa. Furthermore, top quality planners produce a
set of plans that is a super-set of the sets of plans that consti-
tute solutions to all three computational problems of interest,
bQ-k, bQbD-k, and bQoptD-k. Therefore, in what follows, we
will focus on finding subsets of plans out of a given set of
plans, according to the relevant solution definition for the
corresponding computational problem.

Focusing first on bQ-k, while any subset of required size
of the set of plans returned by top quality planners is a solu-
tion to bQ-k, different subsets can vary significantly in their
diversity measure score. Since bQ-k does not pose any re-
strictions on these subsets beyond the desired size, one pos-
sible way of coming up with subsets of high diversity is to
employ the same greedy selection algorithm that was used
for Satisficing Diverse Planning (Katz and Sohrabi 2020).
The algorithm iteratively constructs a set of plans by greed-
ily adding a plan that will contribute the most to already
added plans.

Bounding Diversity
Switching now our attention to bQbD-k, first, note that for a
set of plans and a number k, the decision problem of whether
there exists a subset of bounded diversity of size k is NP-
complete. To show that, we first formally define the decision
problem. For simplicity, assume the diversity metric Dma

and a rational constant bound d = x
y ∈ (0, 1], for some

integers x and y. For each such bound, we define a separate
decision problem1 as follows.

Input: A set of plans P and an integer k.
Prop: P has a subset P ′ of size k s.t. Dma(P ′) ≥ d.

The membership in NP is trivial. We show the hardness
by a polynomial reduction from the clique problem (Garey
and Johnson 1979).

Given a graph G = (V,E) and an integer k, let N =
x|V | and n = 2(y − x)|V |. We construct a set of plans
PG = {πv | v ∈ V } as follows. First, for each (u, v) 6∈ E,
actions au,v are added to both πu and πv . Second, we add
unique actions aiv to the plan πv for all v ∈ V until we get
|πv| = N . Third, we add n actions ai to all plans πv , v ∈ V .
Since the size of each plan is linear in |V |, the reduction is
indeed polynomial.

1Thus, x and y are not part of the input to the decision problem.

For (u, v) ∈ E we then have πu ∩ πv = {a1, . . . , an}
and thus δ(πu, πv) = 1 − n

2N+n . For (u, v) 6∈ E, on the
other hand, πu ∩ πv = {au,v, a1, . . . , an}, and therefore
δ(πu, πv) = 1 − n+1

2N+n−1 < 1 − n
2N+n . To conclude our

construction, we now show that 1− n
2N+n = d:

1− n

2N + n
=

2N

2N + n
=

2x|V |
2x|V |+ 2(y − x)|V |

=
x

y
= d.

Theorem 1 Given a set of plans PG and a number k, there
is a subset of PG with diversity bounded by d of size k if and
only if there is a clique in G of size k.

Proof: Let P ⊆ PG be a subset of plans such that |P | =
k and D(P ) ≥ d. Then for all πu, πv ∈ P we have
δ(πu, πv) = d. Thus, it must be the case that (u, v) ∈ E
for all πu, πv ∈ P and thus the set V ′ = {v | πv ∈ P} is a
clique, of size |V ′| = |P |.

Let V ′ ⊆ V be a clique in G of size k and let P = {πv |
v ∈ V ′} ⊆ PG be a subset of plans. Then, (a) |P | = k,
and (b) for all πu, πv ∈ P we have (u, v) ∈ E and thus
δ(πu, πv) = d, giving us D(P ) = d.

Next, we describe the mixed integer linear program that
is used for finding a subset of plans of bounded diversity.
While the program is not novel,2 its description was not pre-
sented in previous work. Here, we describe the program in
detail. Given a set of plans P and a bound on the diversity d,
the variables are as follows.
• A binary variable vπ per plan π ∈ P , describing whether

the plan is selected for the subset.
The constraints are as follows.

(i) ∀π, π′ ∈ P, s.t. δ(π, π′) < d : vπ + vπ′ ≤ 1, stating
that if the pairwise diversity of π and π′ is below d,
then at most one of these plans can be selected for the
subset, and

(ii)
∑
π∈P

vπ≥k, forcing the size of the subset be at least k.

The objective of the program is to minimize
∑
π∈P vπ . In

words, the program encodes a subset selection and restricts
the selected subset to not have pairs of plans with diver-
sity outside of the provided bound. In what follows, we
prove that the program can be used for devising solutions
for bQbD-k.

Theorem 2 For a planning task Π with a set of all plans of
bounded quality P such that |P | ≥ k, and a bound d, the
binary program finds a subset of size k with the bounded by
d diversity score, for diversity metrics maximizing minimal
pairwise diversity, if such subset exists. Otherwise, the pro-
gram is infeasible.

Proof: We first show that a solution to bQbD-k corresponds
to a feasible assignment. Let P ′ ⊂ P be a solution to
bQbD-k for the bound d, with |P ′| = k. Then, let v as-
sign 1 to plans π ∈ P ′ and 0 otherwise. Since |P ′| = k,
constraint (ii) holds. For π, π′ ∈ P , if either of the plans is

2The mixed integer linear program was previously used for
bounded diversity diverse planning (Katz and Sohrabi 2020).



not in P ′, then vπ + vπ′ ≤ 1. If both plans are in P ′, then
δ(π, π′) ≥ d. Thus, constraint set (i) holds for v and the pro-
gram is feasible. Now, let v be some feasible solution and
let P ′ = {π ∈ P | vπ = 1} be the corresponding subset
of P . Then, (a) from constraint (ii) we have |P ′| ≥ k, and
(b) for all π, π′ ∈ P ′, since vπ + vπ′ = 2, we know that the
corresponding constraint is not in the constraint set (i), and
therefore δ(π, π′) ≥ d. Therefore, P ′ (or any of its subset of
size k) is a solution to bQbD-k.

We now switch our attention to the next computational
problem, bQoptD-k.

Optimizing Diversity
Due to the NP-completeness of the decision problem of se-
lecting a subset of plans of bounded diversity, the corre-
sponding optimization problem is NP-hard. To solve it ef-
ficiently, we encode it in mixed integer linear programming.
We present a novel mixed integer linear program that we use
to find a subset of size k that optimizes the diversity metric.
Given a set of plans P , we define the variables as follows.

• A binary variable vπ per plan π ∈ P , describing whether
the plan is selected for the subset, and
• a single continuous variable vd for bounding the pairwise

diversity.

The constraints are as follows.
(i)

∑
π∈P vπ = k, stating that the size of the subset is

exactly k, and
(ii) ∀π, π′ ∈ P : vd + vπ + vπ′ ≤ δ(π, π′) + 2, stating

that d is bounded by the diversity of each chosen pair,
if the pair is chosen.

The objective of the program is then to maximize vd. In
words, as in the previous case, the program encodes a subset
selection, but in this case all subsets of size k correspond to
valid assignments. We additionally have a continuous vari-
able vd that is bounded by the diversity score of the selected
subset. In the case of diversity metrics that correspond to
minimal pairwise diversity, this would mean to require the
variable vd to be bounded by the diversity of each selected
pair. In other words, if a pair of plans is selected, then vd
should be no greater than their diversity score. If a pair is
not selected, there is no such restriction, but since there is a
natural upper bound of 1 on the overall diversity, vd can be
required to be upper bounded by any value that is larger or
equal to 1. If at least one of vπ , vπ′ gets 0 assigned to it, the
constraint vd + vπ + vπ′ ≤ δ(π, π′) + 2 is then satisfied.
Therefore, the constraint is valid whether the variables vπ
and vπ′ are assigned 0 or 1.

In what follows, we prove that the program can be used
for devising solutions for bQbD-k.

Theorem 3 For a planning task Π with a set of all plans of
bounded quality P such that |P | ≥ k, the mixed integer pro-
gram finds a subset of size k with the optimal diversity score,
for diversity metrics maximizing minimal pairwise diversity.

Proof: Let v, vd be a feasible assignment to the variables
of the mixed integer program (such an assignment always

exists) and let P ′ = {π ∈ P | vπ = 1} be the corresponding
subset of P . Then, from the constraint set (i) we have |P ′| =
k and from constraint set (ii) we have vd ≤ δ(π, π′) for all
π, π′ ∈ P ′. Further, for a plan π ∈ P \P ′ and a plan π′ ∈ P ′
we have vd ≤ 1 + δ(π, π′), which does not pose additional
constraints on the values of vd since all pairwise distances
δ(π, π′) are upper-bounded by 1. Similarly, for π, π′ ∈ P \
P ′, we have vd ≤ 2 + δ(π, π′), which also does not pose
additional constraints on the values of vd. Therefore we have
vd ≤ δ(π, π′) for all π, π′ ∈ P ′ and maximizing vd without
changing v would lead to vd = minπ,π′∈P ′ δ(π, π

′). Thus,
the linear program finds a subset of size k with maximum
minimal pairwise diversity.

Experimental Evaluation
To empirically evaluate the feasibility of our suggested
approach, we have implemented our diverse planners on
top of the Diversity Score Computation component (Katz
and Sohrabi 2019), using CPLEX v12.8.0 for solving the
mixed integer linear programs. The code will be available
upon acceptance. The experiments were performed on In-
tel(R) Xeon(R) CPU E7-8837 @2.67GHz machines, with
the time and memory limit of 30min and 2GB, respec-
tively. The benchmark set consists of all STRIPS benchmarks
from optimal tracks of International Planning Competitions
(IPC) 1998-2018, a total of 1797 tasks in 64 domains. For
Bounded Quality and Diversity Diverse Planning (bQbD-k),
we compare to the existing planners for that computational
problem DFAM and A∗AM (Vadlamudi and Kambhampati
2016). Since these planners are implemented for the diver-
sity metric Dma, we focus our experimental evaluation on
Dma, although our approach works with any metric. Further,
since these planners require an absolute bound on the solu-
tion cost to be provided as a parameter, and in order to ensure
that our quality metricQa (Eq. 2) satisfies IIA (Seipp 2019),
we further restrict the benchmark set to tasks where opti-
mal costs could be found with a state-of-the-art cost-optimal
planner. For that, we used the 17 single cost-optimal plan-
ners from the portfolio of Delfi1 (Katz et al. 2018a). As a re-
sult, for the bQbD-k computational problem, the benchmark
set consists of 1192 tasks.

As a first step, we generate a set of plans of bounded
quality. Focusing on Dma allows us to use unordered top-
quality planners (Katz, Sohrabi, and Udrea 2020) to de-
rive all plans (modulo reorderings) of bounded cost. This
is due to the fact that two plans that differ only in the or-
der of their actions would produce pairwise diversity of 0
and thus any set of plans P that includes two such plans
would get Dma(P ) = 0. For other diversity metrics we
might need to produce the set of all plans of bounded cost
(Katz, Sohrabi, and Udrea 2020). Note that some top-k plan-
ners, such as K∗-based (Katz et al. 2018b) and symbolic
search based (Speck, Mattmüller, and Nebel 2020) can be
easily adapted to produce solutions for top-quality planning,
modifying their stopping criteria. Further, these two plan-
ners can be rather naively adapted to produce unordered
toq-quality solutions, by performing a duplicate check and
skipping plans for which a reordering was previously found.



qm=1.00 qm=1.05 qm=1.10 qm=1.20

DFA A∗A K∗ FI Sym DFA A∗A K∗ FI Sym DFA A∗A K∗ FI Sym DFA A∗A K∗ FI Sym
DFA – 26 39 14 19 – 24 40 13 18 – 30 47 16 22 – 35 50 22 21
A∗A 25 – 42 13 14 22 – 44 11 16 19 – 46 12 18 14 – 46 12 19
K∗ 14 7 – 2 0 14 8 – 0 0 9 3 – 0 0 4 4 – 0 0
FI 37 37 53 – 22 37 38 54 – 26 35 39 55 – 27 30 39 55 – 28
Sym 41 42 50 30 – 42 42 52 25 – 39 40 51 24 – 35 39 51 24 –

Table 1: Pairwise comparison of the number of domains in
which one approach (row) achieves strictly better coverage
than the other (column), for K∗-bQbD (K∗ for short), FI-bQbD
(FI for short), and Sym-bQbD (Sym for short) to DFAM (DFA
for short) and A∗AM (A∗A for short), k = 5, diversity bound
0.15, and four quality bounds.

Such a modification can turn extremely beneficial in prac-
tice, reducing the amount of disk write operations and the
need for storage either in memory or on disk. In our exper-
iments, we have performed the first step with each of these
three planners, namely FI, K∗, and Sym. We run these plan-
ners with a 29min time bound, to allow at least one minute
for the second step. In all cases, the overall time bound for
both steps is 30min. Further, to avoid generating a larger
amount of plans, the overall bound on the number of gener-
ated plans for the first step is set to 10000. Since bQoptD-k
requires the first step to produce all plans of bounded qual-
ity, we report failure on the tasks where the bound on the
number of plans was reached.

As a second step, we select a subset of plans according to
the computational problem of interest. For bQ-k, we use the
greedy approach suggested by Katz and Sohrabi (2020). For
the bQbD-k and bQoptD-k computational problems, we solve
a mixed-integer linear program, as described in the previous
section. This results in three configurations for each compu-
tational problem of interest.

Table 1 presents a pairwise comparison of our planners,
K∗-bQbD, FI-bQbD, and Sym-bQbD and the existing planners
DFAM and A∗AM (Vadlamudi and Kambhampati 2016), for
k = 5. Note, the prefixes FI, K∗, and Sym refer to the un-
ordered top-quality planners used in the first step while the
suffixes bQbD, bQ, and bQoptD refer to the computational
problem. We use the diversity bound of 0.15 and experi-
ment with four quality bounds, defined by multipliers of the
optimal plan cost, from qm = 1.0 (optimal plans only), to
qm = 1.05, qm = 1.10, and to qm = 1.20 (up to 120%
of the optimal plan cost). The results for these four quality
bound multipliers are depicted in the four parts of the ta-
ble. Each part compares the planners in rows to planners in
columns in terms of overall coverage in a domain, computed
as follows. A planner gets a coverage of 1 on a planning task
if it was able to either find a solution of size k or prove that
no such solution exists. Otherwise, the planner gets cover-
age 0. The coverage of a domain is a sum over coverages
of all tasks in the domain. Each entry depicts the number of
domains, out of the total of 64 domains, where the planner
in row achieves strictly larger coverage than the planner in
column. Best results are highlighted in bold. For example,
for qm = 1.0, Sym-bQbD solves more tasks than DFAM in
41 domains, while DFAM solves more tasks than Sym-bQbD
in 19 domains. Consequently, they solve the same number
of tasks in 4 domains. First, note that K∗-bQbD performs

qm=1.00 qm=1.05 qm=1.10 qm=1.20

k DFA A∗A FI Sym DFA A∗A FI Sym DFA A∗A FI Sym DFA A∗A FI Sym
5 453 449 594 631 452 433 582 603 484 424 573 574 548 411 564 548

10 390 373 530 594 389 354 511 559 426 338 494 535 505 318 480 499
102 189 238 433 491 194 216 403 448 229 185 365 396 291 123 302 352
103 79 238 380 435 82 216 345 386 105 185 287 321 124 123 203 257

Table 2: The overall coverage comparison of FI-bQbD (FI
for short) and Sym-bQbD (Sym for short) to DFAM (DFA for
short) and A∗AM (A∗A for short), for diversity bound 0.15,
four quality bounds, and various k values.

quite poorly compared to all other techniques. We conjec-
ture that our rather naive extension of the K∗-based planner
results in an unordered top-quality planner that is not suf-
ficiently competitive with the other two techniques. There-
fore, we exclude K∗-bQbD from further experiments. While
both FI-bQbD and Sym-bQbD outperform the existing ap-
proaches in terms of the number of domains where they
achieve superior performance, it is worth mentioning that
for each of the approaches there are multiple domains where
that approach excels. DFAM performs especially well in MI-
CONIC, OPENSTACKS, and VISIT-ALL14, while A∗AM ex-
cels in MPRIME, MYSTERY, and SOKOBAN.

To show how these planners scale with larger values of
k, Table 2 presents aggregated overall coverage for the val-
ues of k = 5, 10, 100, 1000. Going deeper into the cover-
age results, note that DFAM does not prove unsolvability.
A∗AM, on the other hand, for large values of k = 100 and
k = 1000, did not find any solutions, and all the instances
reported in the table for A∗AM and these values of k corre-
spond to unsolvable cases. For our suggested approach, both
FI-bQbD and Sym-bQbD are able to cope with both, for any
value of k. It is worth mentioning that the performance of
DFAM often improves, sometimes significantly, with larger
quality bounds. We conjecture that this increase is due to
the nature of the branch-and-bound algorithm, that does not
necessarily produce plans in the order of their costs. Proving
unsolvability, however, still requires to produce all plans of
bounded cost and our experimental evaluation shows this to
be challenging for DFAM, for larger values of k.

Switching to bQ-k and bQoptD-k, in order to evaluate the
quality of the solution obtained using the greedy algorithm,
we compare the diversity metric score of the subset chosen
by FI-bQ (respectively, Sym-bQ) to the best possible score,
obtained with the FI-bQoptD (respectively, Sym-bQoptD)
planner. Figure 1 depicts the comparison for k = 5, for
all four quality multipliers 1.0, 1.05, 1.1, and 1.2, for tasks
where both planners were able to find a solution, and the
first step produced at least k + 1 plans. Note that the greedy
approach works surprisingly well. On these tasks, in most
cases the greedy algorithm has reached the optimum (nodes
on the diagonal): 80 out of 121, 90 out of 126, 71 out of
105, and 50 out of 105 for FI-bQ and 106 out of 176, 99 out
of 162, 67 out of 118, and 63 out of 129 for Sym-bQ (for
the four quality multipliers, respectively). When it hasn’t
reached the optimum, the scores are still mostly below the
y = x + 0.1 line. There are only 21, 18, 17, and 26 tasks
for FI-bQ and 26, 23, 20, and 30 tasks for Sym-bQ for the
four quality multipliers 1.0, 1.05, 1.1, and 1.2, respectively
above the y = x+ 0.1 line, and only 21 tasks for FI-bQ and
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Figure 1: Diversity score, greedy vs. optimal subset selec-
tion for k = 5, (a) FI-bQ vs. FI-bQoptD, and (b) Sym-bQ vs.
Sym-bQoptD.

16 tasks for Sym-bQ in total for all quality multipliers above
the y = x+ 0.2 line.

While our experiments show that the greedy approach of-
ten produces solutions of diversity close to optimum, the
question remains how these algorithms compare in their run
time. Figure 2 presents such run time comparison between
the greedy and the optimal approaches. The greedy algo-
rithm always finished in under 1.2 seconds, while solving
mixed integer linear program takes significantly longer on
these tasks, up to 500 seconds for FI-bQoptD and 1760 sec-
onds for Sym-bQoptD.

Finally, note that an inherent limitation of our approach
to solving bQoptD-k is that the first step must produce a
solution to the (unordered) top quality planning problem.
There is no such limitation when solving bQ-k. As a re-
sult, FI-bQ successfully solves bQ-k in 617, 617, 615, and
613 tasks for the four quality multipliers, while FI-bQoptD
solves bQoptD-k in only 369, 333, 273, and 191 tasks. Simi-
larly, Sym-bQ successfully solves bQ-k in 702, 675, 648, and
624 tasks for the four quality multipliers, while Sym-bQoptD
solves bQoptD-k in only 379, 338, 262, and 196 tasks.

Discussion and Future Work
In this work, we extend the portfolio of existing tools for
various computational problems in diverse planning by in-
troducing three new such tools. We follow the recently in-
troduced taxonomy and, focusing on bQbD-k, map existing
planners DFAA/DFAM and A∗AA/A∗AM to that problem. For
that, we introduce a novel quality metric under which these
planners can be considered to solve bQbD-k. The metric also
allows us to use top quality planners as a basis for our pro-
posed planners, for bQbD-k as well as for other computa-
tional problems, choosing a subset of plans from the solution
for the top quality problem. We show that it is NP-complete
to find a solution to bQbD-k, given the set of all plans of
bounded cost and suggest using a previously proposed in-
teger linear programming based approach, which is experi-
mentally shown to favorably compete with existing planners.
As the integer linear program was not previously detailed in
the literature, we present it in detail and formally prove that
it can be used for solving bQbD-k. Switching from bounding
to optimizing diversity, we suggest a novel mixed integer
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Figure 2: Diversity score computation time, greedy vs. opti-
mal subset selection for k = 5, (a) FI-bQ vs. FI-bQoptD, and
(b) Sym-bQ vs. Sym-bQoptD.

linear program and formally prove that this program solves
bQoptD-k. For another computational problem, bQ-k, we use
an existing greedy approach of selecting a subset of plans,
and empirically show that such a simple approach is able to
often achieve the optimum in practice.

Our suggested approach is similar to the one of Vadlamudi
and Kambhampati (2016), in that it is also separated into
two steps: (i) finding a set of plans of bounded cost, and (ii)
choosing a proper subset from the found set. There are two
major differences. The first one is the stopping criteria for
step (i): while Vadlamudi and Kambhampati (2016) iterate
until enough plans are found or no more plans exist, and can
stop before finding all plans of bounded cost, we are using an
existing (unordered) top-quality planner as is; thus, we will
produce the set of all plans of bounded cost in step (i). While
it is possible to adapt the top quality planner that we used
to terminate earlier, we decided not to do so, to allow for
easily replacing the top quality planner with a different one.
The second difference is that instead of trying to construct a
feasible solution during the execution of step (i), we perform
step (ii) after the first step is finished, as a post-processing.
Further, instead of implementing a dedicated algorithm, we
cast the problem of choosing the proper subset as an integer
linear program, allowing us to use existing solvers. Thus,
our solution is highly modular, allowing us to easily replace
the solvers when better ones become available.

While there has been significant progress in the field of
diverse planning recently, there are still several interesting
computational problems for which no planners currently ex-
ist. For example, in this work we show how to optimize di-
versity when the set of candidate plans is given. However,
if the quality restriction is alleviated, it is not clear how
to choose a set of maximal diversity. It is not even clear
whether all plans must be considered while searching for
such a set. Another possible problem of interest is finding a
subset of optimal quality among the bounded diversity ones.
Focusing on these planning problems is an interesting re-
search direction. Further, in this work we have shown the
computational complexity of choosing a subset of plans of
bounded diversity for the minimal pairwise stability metric,
while for other metrics it remains an open problem.
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