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Abstract

Automated planning is one of the foundational areas of AI.
Since no single planner can work well for all tasks and do-
mains, portfolio-based techniques have become increasingly
popular in recent years. In particular, deep learning emerges
as a promising methodology for online planner selection.
Owing to the recent development of structural graph repre-
sentations of planning tasks, we propose a graph neural net-
work (GNN) approach to selecting candidate planners. GNNs
are advantageous over a straightforward alternative, the con-
volutional neural networks, in that they are invariant to node
permutations and that they incorporate node labels for better
inference.
Additionally, for cost-optimal planning, we propose a two-
stage adaptive scheduling method to further improve the like-
lihood that a given task is solved in time. The scheduler may
switch at halftime to a different planner, conditioned on the
observed performance of the first one. Experimental results
validate the effectiveness of the proposed method against
strong baselines, both deep learning and non-deep learning
based.
The code is available at https://github.com/matenure/GNN
planner.

Introduction
Automated planning is one of the foundational areas
of Artificial Intelligence research. Planning is concerned
with devising goal-oriented policies executed by agents
in large-scale state models. Since planning is intractable
in general (Chapman 1987) and even classical planning
is PSPACE-complete (Bylander 1994), a single algorithm
unlikely works well for all problem domains. Hence,
surging interest exists in developing portfolio-based ap-
proaches (Seipp et al. 2012; Vallati 2012; Howe et al. 1999;
Seipp et al. 2015), which, for a set of planners, compute
an offline schedule or an online decision regarding which
planner to invoke per planning task. While offline portfo-
lio approaches focus on finding a single invocation sched-
ule that is expected to work well across all planning tasks,
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online methods learn to choose the right planner for each
given task. Most online methods use handcrafted features
for learning (Cenamor, de la Rosa, and Fernández 2016).

Recent advances in deep learning have stimulated in-
creasing interest in the use of deep neural networks for on-
line portfolio selection, alleviating the effort of handcraft-
ing features. A deep neural network may be considered
a machinery for learning feature representations of an in-
put object without the tedious effort of feature engineer-
ing. For example, convolutional neural networks (CNN) take
the raw pixels as input and learn the feature representa-
tion of an image through layers of convolutional transfor-
mations and abstractions, which result in a feature vector
that captures the most important characteristics of the im-
age (Krizhevsky, Sutskever, and Hinton 2012). A successful
example in the context of planning is Delfi (Katz et al. 2018;
Sievers et al. 2019a), which treats a planning task as an im-
age and applies CNN to predict the probability that a certain
planner solves the task within the time limit. Delfi won the
first place in the Optimal Track of the 2018 International
Planning Competition (IPC).

As planning tasks admit state transition graphs that are
often too big to fit in any conceivable size memory, sev-
eral other graphs were developed to encode the structural
information. Two prominent examples are the problem de-
scription graph (Pochter, Zohar, and Rosenschein 2011) for
a grounded task representation; and the abstract structure
graph (Sievers et al. 2017; 2019b) for a lifted representation.
Both graphs are used in classical planning for computing
structural symmetries (Sievers et al. 2019b; Domshlak, Katz,
and Shleyfman 2012). The most important use of structural
symmetries is search space pruning, considerably improv-
ing the state-of-the-art. The lifted structural symmetries are
also found useful for faster grounding and mutex generation
(Röger, Sievers, and Katz 2018).

Owing to the development of these structural graphs, we
propose a graph neural network (GNN) approach to learning
the feature representation of a planning task. A proliferation
of GNN architectures emerged recently (Bruna et al. 2014;
Defferrard, Bresson, and Vandergheynst 2016; Li et al. 2016;
Kipf and Welling 2017; Hamilton, Ying, and Leskovec
2017; Gilmer et al. 2017; Velic̆ković et al. 2018). In this
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Figure 1: An example planning task (left) with its grounded graph representation (middle) and the lifted one (right). The task,
blocksworld, uses a gripper to rearrange a set of blocks from an initial configuration to the goal configuration. The coloring of
the graph nodes indicate node labels. For more details, see the section “Graph Construction.”

work, we explore the use of two representative GNNs—
graph convolutional networks (Kipf and Welling 2017) and
gated graph neural networks (Li et al. 2016). The former
is convolutional, which extends convolution filters for im-
age patches to graph neighborhoods. The latter is recur-
rent, which treats the representation of a graph node as
a dynamical-system state that can be recurrently updated
through neighborhood aggregation. A key difference be-
tween the two is whether network parameters are shared
across layers/steps, similar to that between a CNN and a re-
current neural network.

GNNs have two advantages over CNNs for graph inputs.
First, GNNs address the limitation of images that are not
invariant to node permutation. Second, GNNs incorporate
node and edge attributes that produce a richer representation
than does the image surrogate of the graph adjacency matrix
alone.

With the use of GNNs, we in addition consider the prob-
lem of cost-optimal planning, whose goal is to solve as many
tasks as possible, each given a time limit, with cost-optimal
planners. We propose a two-stage adaptive scheduling ap-
proach that enhances the likelihood of task solving within
the time limit, over the usual approach of using a single plan-
ner for the whole time span. The proposal is based on the
observation that if a planner solves a given task in time, its
execution is often rather quick. Hence, we divide the time
interval in two equal halves and determine at the midpoint
whether to change the planner, should it be still running at
that time. Experimental results show that the proposed adap-
tive scheduling consistently increases the number of solved
tasks, compared with the use of a single planner.

Planning and Planner Selection
Planning algorithms generally perform reachability analysis
in large-scale state models, which are implicitly described
in a concise manner via some intuitive declarative language.
One of the most popular approaches to classical planning in
general and to cost-optimal planning in particular is state-
space heuristic search. The key to this approach is to au-
tomatically derive an informative heuristic function h from
states to scalars, estimating the cost of the cheapest path
from each state to its nearest goal state. The search algo-
rithms then use these heuristics as search guides. If h is

admissible (that is, it never overestimates the true cost of
reaching a goal state), then search algorithms such as A∗ are
guaranteed to provide a cost-optimal plan.

Over the years, many admissible heuristics were devel-
oped to capture various aspects of planning tasks; see, e.g.,
(Edelkamp 2001; Helmert et al. 2014; Helmert and Domsh-
lak 2009; Haslum, Bonet, and Geffner 2005). Further, search
pruning techniques (Wehrle and Helmert 2014; Shleyfman
et al. 2015) were developed to reduce the search effort,
producing sophisticated search algorithms (Edelkamp, Kiss-
mann, and Torralba 2015; Gnad and Hoffmann 2015). All
these techniques can be used interchangeably. Moreover,
most of them are highly parameterized, allowing to construct
many possible cost-optimal planners.

Because of the intractability of planning, a single plan-
ner unlikely works well across all possible domains. Some
planners excel on certain tasks, while some on others. How-
ever, given a task, it is unclear whether a particular planner
works well on the task without actually running it. With a
large number of planners, especially in resource constrained
situations, it is infeasible to try all of them until a good one
is found. Hence, it is desirable to predict the performance of
the planners on the task and select the best performing one.

One approach of making such a selection allocates a time
budget to each planner and assigns the same allocation for all
tasks, offline. Prominent examples include Fast Downward
Stone Soup (FDSS) (Helmert et al. 2011) and Fast Down-
ward Cedalion (Seipp, Sievers, and Hutter 2014).

Another approach uses supervised machine learning to
predict an appropriate planner for a task. The predictive
model requires for each task a feature representation, often
handcrafted (Howe et al. 1999; Cenamor, de la Rosa, and
Fernández 2016), including for example the number of ac-
tions, objects, predicates in the planning task, and the struc-
ture of the task’s causal graph. This approach worked rea-
sonably well in practice for non-optimal planning, winning
the first place in IPC 2014. However, even the updated ver-
sion, whose portfolio included top performing planners at
IPC 2018 (e.g., the one presented by (Katz and Hoffmann
2014)), performed poorly in this competition, ranked only
12th.

For cost-optimal planning, an online approach is a meta-
search in the space of solution set preserving problem mod-
ifications (Fuentetaja et al. 2018), aiming at finding task for-



mulations that a planner would work well on. The resulting
planner, MSP, also ranked 12th in IPC 2018.

Yet another cost-optimal planner performing online selec-
tion is Delfi, which treats a planning task as an image and se-
lects a planner from the portfolio through training a CNN to
predict which planner solves the given task in time. Specifi-
cally, a planning task is formulated as a certain graph, whose
adjacency matrix is converted to an image, and a CNN is
used to perform image classification. Delfi won IPC 2018.

Note that graph representations have also been used for
probabilistic planning (Toyer et al. 2018), which is applied
to a specific domain. In such a setting, action schemas are
shared among the input tasks, but it is unclear how the ap-
proach can be adapted to domain-independent settings.

Graph Construction
Two versions of Delfi were submitted to IPC 2018, differing
in the way the planning task is represented. Delfi1 works on
the lifted representation of the task, based on PDDL’s ab-
stract structure graph (ASG) (Sievers et al. 2019b); whereas
Delfi2 works on the grounded representation, based on
the problem description graph (PDG) (Pochter, Zohar, and
Rosenschein 2011). Both graphs have additional features
(e.g., node labels), which are ignored when being converted
to an image.

In this work, we reuse the graphs built by Delfi, incorpo-
rating additionally node labels. Figure 1 shows a classical
planning example, blocksworld, with its two graphs. For il-
lustrative purpose only the three-block version is shown; the
problem is NP-hard.

For the construction of ASGs, planning tasks correspond
to abstract structures, which include actions, axioms, the ini-
tial state, and the goal. Nodes are labeled by their types; e.g.,
action, axiom, predicate, and object. Edges encode the inclu-
sion hierarchy of the abstract structures.

For the construction of PDGs, there are nodes for all task
facts, variables, actions, conditional effects, and axioms.
Each node type has a separate label, further divided by the
action cost in the case of action nodes, and whether the fact
is initially true and required in the goal, in the case of facts.
Edges connect facts to their variables, actions to their con-
ditional effects, conditional effects to their effect facts, con-
dition facts to their conditional effects, precondition facts to
their actions and axioms, and actions and axioms to their
unconditional effect facts.

Planner Selection with Graph Neural Nets
Given a portfolio of planners, we model the selection prob-
lem as predicting the probability that each planner fails to
solve a given task in time. Then, the planner with the low-
est probability is selected for execution. Denote by G a task,
G = {G} the space of tasks, and D the size of the portfolio.
Parameterized by θ ∈ Θ, the problem amounts to learning a
D-variate function f : G × Θ → [0, 1]D that computes the
failure probabilities for all planners in the portfolio.

Let S = {(G, y)} be the set of task-label pairs for train-
ing, where y ∈ {0, 1}D is the ground-truth labeling vector,
whose element yj denotes the fact whether planner j fails to

solve the task in time:

yj =

{
0, if execution time of j does not exceed T ,
1, otherwise.

(1)

Then, the learning amounts to finding the optimal parameter
θ that minimizes the cross-entropy loss function

L(θ) = −
∑

(G,y)∈S,

D∑
j=1

yj log fj(G, θ)

+ (1− yj) log(1− fj(G, θ)).

Graph Representation Learning
Since a planning task is formulated as a graph, we writeG =
(V,E), where V is the node set and E is the edge set. For
calculus, the function f requires a vectorial representation
hG of the graphG. Deep learning uses deep neural networks
to compute this vector, rather than handcrafting. In our work,
the design of f consists of three steps:

1. Parameterize the vectorial representation hv for all nodes
v ∈ V .

2. Form the graph representation as a weighted combination
of hv:

hG =
∑
v∈V

αvhv, (2)

where αv denotes the attention weight, scoring in a sense
the importance of the contribution of each node to the
overall representation of the graph.

3. Parameterize f as a feedforward neural network, taking
hG as input:

f(G, θ) = sigmoid(W>logithG). (3)

The parameter set θ thus includes the parameter matrix
Wlogit and all the parameters in hv and αv .

Graph neural networks differ in the parameterizations of
the node representation hv and possibly the attention weight
αv . In this work, we consider two types of GNNs: graph
convolutional networks and gated graph neural networks.

Graph Convolutional Networks (GCN)
GCN (Kipf and Welling 2017) generalizes the convolution
filters for image patches to graph neighborhoods. Whereas
an image patch contains a fixed number of pixels, which may
be handled by a fixed-size filter, the size of a node neighbor-
hood varies. Hence, the convolution filter for graphs uses
a parameter matrix to transform each node representation
computed from the past layer, and linearly combines the
transformed representations with certain weights based on
the graph adjacency matrix.

Specifically, let t be the layer index, orient the node rep-
resentations h(t)v as row vectors, and stack them to form the
matrix H(t). A layer of GCN is defined as

H(t+1) = σ(ÂH(t)W (t)).



Here, W (t) is the parameter matrix, Â is a normalization of
the adjacency matrixA, and σ is an activation function (e.g.,
ReLU). The normalization is defined as

Â = D̃−
1
2 ÃD̃−

1
2 , Ã = A+I, D̃ = diag(di), di =

∑
k

Ãik.

Using an initial feature matrix X (which, for example,
can be defined based on node labels by using one-hot en-
coding) as the input H(0), a few graph convolutional layers
produce a sophisticated representation matrix H(T ), whose
rows are treated as the final node representations hv . Orient
them back as column vectors; then, the attention weights are
defined by using a feedforward layer

αv = sigmoid(w>gate[h
(T )
v ;h(0)v ]), (4)

where wgate is a parameter vector. Hence, the overall param-
eter set for the model f by using the GCN architecture is

θ = {Wlogit, wgate,W
(0),W (1), . . . ,W (T−1)}.

Gated Graph Neural Networks (GG-NN)
The architecture of GG-NN (Li et al. 2016) is recurrent
rather than convolutional. In this architecture, the node rep-
resentation is treated as the state of a dynamical system and
the gated recurrent unit (GRU) is used to update the state
upon a new input message:

h(t+1)
v = GRU(h(t)v ,m(t+1)

v ).

The message m(t+1)
v is an aggregation of the transformed

states for all the neighboring nodes of v. Specifically, de-
note by in(v) and out(v) the sets of in-neighbors and out-
neighbors of v, respectively, and let Win and Wout be the
corresponding parameter matrices shared by all graph nodes
and recurrent steps. The message is then defined as

m(t+1)
v =

∑
u∈in(v)

W>in h
(t)
u +

∑
u′∈out(v)

W>outh
(t)
u′ .

Similar to GCN, GG-NN may use the initial features for
each node as the input h(0)v and produce h(T )

v as the final
node representation hv , through T recurrent steps. Thus, the
attention weights αv may be computed in the same manner
as (4). Therefore, the overall parameter set for the model f
by using GG-NN is

θ = {Wlogit, wgate,Win,Wout, and parameters of GRU}.

Variants
One variant of the attention weights in (4) is that the pa-
rameter vector wgate may not be shared by the planners.
In other words, for each planner j, a separate parameter
wgate,j is used to compute the attention weights αv,j and sub-
sequently the graph representation hG,j and the predictive
model fj(G, θ) = sigmoid(W>logit,jhG,j). In this manner,
node representations are still shared by different planners,
but not the graph representation. Such an approach may be
used to increase the capacity of the model f , which some-
times works better than using a single wgate.

Adaptive Scheduling
When the goal is to solve a given task within a time limit
T (but not how quickly it is solved), one may try a second
planner if she “senses” that the selected one unlikely com-
pletes in time. Such a scenario may occur when the model
f described in the preceding section is insufficiently accu-
rate. Then, we offer a second chance to reevaluate the prob-
ability that the currently invoked planner cannot complete
within the rest of time allowance, versus the probability that
a separate planner fails to solve the task in this time span.
If the former probability is lower, we have no choice but
to continue the execution of the current planner; otherwise,
we switch to the latter one. The intuition comes from the
observation that if a planner solves a task in time, often it
completes rather quickly. Hence, the remaining time may be
sufficient for a second planner, should its failure/success be
accurately predicted.

To formalize this idea, we set the time of reevaluation at
T/2. We learn a separate model g that predicts the probabil-
ities that each planner fails to solve the task before timeout,
conditioned on the fact that the current planner p needs more
time than T/2. We write the function g : G × [D] × Θ →
[0, 1]D, where [D] denotes the set of integers from 1 to D,
and parameterize it as

g(G, p, θg) = sigmoid(W>logithG +W>failep),

where ep ∈ {0, 1}D is the one-hot vector whose pth element
is 1 and 0 for others.

Compare this model with f in (3). First, we introduce an
additional parameter matrix Wfail to capture the conditional
fact. Second, the graph representation hG reuses that in f . In
other words, the two models f and g share the same graph
representation but differ in the final prediction layer.

Training Set
One must construct a training set Sg for learning the model
g. One approach is to reuse all the graphs in the training
of the model f . For every such graph G, we pick the plan-
ners p whose execution time exceeds T/2 and form the pairs
(G, p). For each such pair, we further construct the ground-
truth labeling vector z ∈ {0, 1}D to form the training set
Sg = {(G, p, z)}.

The construction of the labeling vector follows this ratio-
nale: For any planner j different from p, because the time
allowance is only T/2, straightforwardly zj = 0 if j solves
the task in time less than T/2; otherwise, zj = 1. On the
other hand, when j coincides with p, the continued execu-
tion of j gives a total time allowance T . Hence, zj = 0 if j
solves the task in time less than T and otherwise zj = 1. To
summarize,

zj =


0, if j = p and execution time of j is ≤ T ,
1, if j = p and execution time of j is > T,

0, if j 6= p and execution time of j is ≤ T/2,
1, if j 6= p and execution time of j is > T/2.

The size of the training set Sg constructed in this manner
may be smaller, but more likely greater, than that of S, de-
pending on the performance of the planners on each task. In



Table 1: Summary of data set.
Grounded Lifted

# Graphs, train+val / test 2,294 / 145
# Nodes, min / max / mean / median 6 / 47,554 / 2,056 / 580 51 / 238,909 / 3,001 / 1,294
Node degree, min / max / mean / median 0.88 / 10.65 / 3.54 / 3.28 1.04 / 1.82 / 1.49 / 1.47
# Node labels 6 15

practice, we find that |Sg| is a few times of |S|. Such a size
does not incur substantially more expense for training.

With the training set defined, the loss function is

Lg(θg) = −
∑

(G,p,z)∈Sg,

D∑
j=1

zj log gj(G, p, θg)

+ (1− zj) log(1− gj(G, p, θg)).

Two-Stage Scheduling
We now have two models f and g. In test time, we first eval-
uate f and select the planner p with the lowest predicted
probability for execution. If it solves the task before half-
time T/2, we are done. Otherwise, at halftime, we evaluate
g and obtain a planner j with the lowest predicted probabil-
ity. If j = p, we do nothing but to let the planner continue
the job. Otherwise, we terminate p and invoke j, hoping for
a successful execution.

Experiments
Data Set and Portfolio
To evaluate the effectiveness of the proposals, we prepare
a data set composed of historical and the most recent IPC
tasks. Specifically, the historical IPC tasks form the training
and validation sets, whereas those of the year 2018 form the
test set. A small amount of tasks are ignored, the reason of
which is explained in the next paragraph. Summary of the
data set is given in Table 1.

We use the same portfolio as did Delfi (Katz et al. 2018),
which contains 17 base planners, as it is convenient to com-
pare with the image-based CNN approach. See the cited ref-
erence for details of the base planners. The tasks unsolvable
by any of these planners within the time limit T = 1800s
are ignored in the construction of the data set.

We prepare two sets of training/validation splits. The first
set reuses the split in Delfi, which conforms to the compe-
tition setting where a single model is used for evaluation.
On the other hand, to reduce the bias incurred by a single
model, for another set we randomly generate 20 splits (with
an approximately 9:1 ratio). In ten of them, tasks from the
same domain are not separated, whereas in the other ten,
they may. We call the former scenario domain-preserving
split whereas the latter random split.

Each task in the data set has two graph versions, grounded
and lifted, as explained earlier. For each version, the size
of the graphs has a very skewed distribution (whereas the
sparsity distribution is relatively flat), with some graphs be-
ing particularly large. Table 1 suggests that the lifted ver-
sion is generally larger than the grounded one. However, be-
cause the distribution is rather skewed, we plot additionally

in Figure 2 the individual graph sizes to offer a complemen-
tary view. The plot indicates that the lifted version is much
smaller for the tasks with the largest grounded graphs.
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Figure 2: Node counts of the lifted graphs relative to that
of the grounded ones (tasks sorted in increasing order of
grounded size).

Training Details
For the training of the neural networks, we use the Adam
optimizer (Kingma and Ba 2015) with learning rate 0.001.
We slightly tune other hyperparameters: the number of lay-
ers in GCN and steps in GG-NN is selected from {2, 4, 6}
and the dimension of the node representations h(t)v is chosen
from {100, 150, 200}. Meanwhile, we also tune the archi-
tecture through experimenting with a variant of the attention
weights: replace wgate in (4) by usingD separate copies, one
for each planner (see the subsection “Variants”).

We used eight CPU cores and one GPU for training. The
consumed memory was approximately 5–10GB. The train-
ing of one model with one data split took approximately 10
minutes.

Effectiveness of Graph Neural Networks
Single planner; Delfi split: We compare the performance
of several types of methods, as summarized in Table 2. In ad-
dition to the coverage—the percentage of solved tasks—the
column “eval. time” presents the time needed for selecting a
planner, which includes, for example, the time to convert a
planning task to a graph and that to evaluate the neural net-
work model. This time is overhead and hence for any rea-
sonable method, it should not occupy a substantial portion
of the overall time allowance T = 1800s.

The first two methods are weak baselines. As the name
suggests, “random planner” uniformly randomly selects a



Table 2: Percentage of solved tasks in the test set and average
evaluation time of the method. Delfi split; single planner.

Method Solved Eval. Time
Random planner 60.6% 0
Single planner for all tasks 64.8% 0
Complementary2 84.8% 0
Planning-PDBs 82.0% 0
Symbolic-bidirectional 80.0% 0
Enhanced features + random forest 82.1% 0.51s
Image based, CNN, grounded 73.1% 11.00s
Image based, CNN, lifted 86.9% 3.16s
Graph based, GCN, grounded 80.7% 23.15s
Graph based, GCN, lifted 87.6% 9.41s
Graph based, GG-NN, grounded 77.9% 14.53s
Graph based, GG-NN, lifted 81.4% 11.44s

planner, whereas “single planner for all tasks” uses the one
that solves the most number of tasks in the training set. Nei-
ther method takes time to perform selection. The percentage
of solved tasks for the random method is the expected value.

The next three are state-of-the-art planing systems, not
based on deep learning. These systems are the top per-
formers of IPC 2018, second only to Delfi. Both Com-
plementary2 and Planning-PDBs perform A∗ search with
heuristic guidances based on sophisticated methods for pat-
tern databases creation (Franco, Lelis, and Barley 2018;
Martinez et al. 2018). Symbolic-bidirectional, on the other
hand, is a baseline entered into the competition by the orga-
nizers. As the name suggests, it runs a bidirectional symbolic
search, with no heuristic guidance (Torralba et al. 2017).
None of these methods is portfolio based and hence no time
is needed for planner selection. Still, they are rather compet-
itive for cost-optimal planning.

The next one is a machine learning approach based on
enhanced features developed by (Fawcett et al. 2014). With
these handcrafted features, any standard, non-deep, machine
learning model may be applied. We use random forest, re-
portedly the best model experimented by the authors of the
referenced paper. In addition to the percentage coverage,
time to compute the features is reported in the table.

Followed are deep learning methods: the two CNNs come
from Delfi and the GCNs and GG-NNs are our proposal.
For each network architecture, the performance of using
grounded/lifted inputs are separately reported.

The results in Table 2 show that the planners in the portfo-
lio have good qualities: with close to twenty planners, even a
random choice can solve more than 60% of the tasks. Mean-
while, the state-of-the-art methods, even though not based
on deep learning, set a high bar. Delfi, based on CNN, yields
a better result for the lifted graphs, but not so much for the
grounded ones. Further, one of our GNNs (GCN on lifted
graphs) achieves the best performance, whereas the other
three GNNs outperform CNN on grounded graphs.

Using either CNNs or GNNs, it appears consistently that
the lifted graphs yield better results than do the grounded
ones. Moreover, for the same neural network, they also re-
quire less evaluation time. One reason is that lifted graphs

are less expensive to construct, albeit being larger on aver-
age.

We confirm from the table that for all deep learning meth-
ods, the time for selecting a planner is negligble compared
with the allowed time for executing the planner.

Single Planner; multiple splits: We additionally report in
Table 3 the results of multiple splits, for the lifted graphs,
following (Sievers et al. 2019a). See the top three rows. Sim-
ilar to the above observations, GCN consistently works bet-
ter than GG-NN and it also outperforms CNN. Moreover,
one generally obtains better performance by using random
splits, compared with domain-preserving ones.

Table 3: Percentage of solved tasks in the test set (lifted ver-
sion). Multiple splits; single planner.

Domain-preserv. Random
Mean Std Mean Std

Image based, CNN 82.1% 6.6% 86.1% 5.5%
Graph based, GCN 85.6% 5.5% 87.2% 3.5%
Graph based, GG-NN 76.6% 5.8% 74.4% 2.7%
Adaptive, GCN 91.1% 3.8% 92.1% 3.2%
Adaptive, GG-NN 83.0% 5.8% 86.6% 2.0%

Effectiveness of Adaptive Scheduling
We first verify the motivation of using more than one plan-
ner: frequently a planner solves a task rather quickly, if it
ever does. In Figure 3 we plot a curve for each of the deep
learning methods regarding the number of solved tasks as
time evolves (to avoid cluttering, only those with the lifted
version are shown). The oracle curve on the top is the ceiling
performance obtained by always selecting the fastest planner
for each task. For all curves, one sees a trend of diminishing
increase, indicating that most of the tasks are solved rather
quickly.
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Figure 3: Number of solved tasks with respect to time. “Ora-
cle” is the ceiling performance obtained by always selecting
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Two planners; Delfi split: Based on this observation, al-
lowing halftime for a second chance suffices for an alterna-
tive planner to complete the task. Hence, we compare the
performance of the single selection with that of adaptive
scheduling. For a straightforward variant, we also consider
a two-planner fixed scheduling, whereby two planners with
the smallest failure probability are selected for execution,
each given a timeout limit T/2.
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split; two planners.

Figure 4 reports the results for the Delfi split. One sees
that adaptive scheduling consistently increases the percent-
age of solved tasks on both GNN architectures and both
graph versions. It pushes the best performance 87.6% seen
in Table 2 to the new best 89.7%. On the other hand, two-
planner fixed scheduling is generally less competitive than
even one-planner. This result is not surprising, because if
the single-planner model f is not sufficiently accurate, one
does not expect that selecting two may help. The adaptive
model g, on the other hand, adapts to the case when the first
planner fails and hence is more useful.

Two planners; multiple splits: For multiple splits, the
results are reported in the bottom two rows of Table 3.
One similarly sees that adaptive scheduling consistently im-
proves over single-planner scheduling.

Multiple planners; Delfi split; simple greedy: The suc-
cess of adaptive scheduling raises much interest in the use
of more than one planner. A straightforward extension of the
adaptive model g is to select more than two planners; but as
the number of planners increases, the model becomes more
and more complex and challenging to train. Instead, we ex-
plore offline, non-machine learning selection methods.

In Table 4 we consider the following approach: k planners
are selected (independent of the task) and each is allotted
T/k time. The first selected planner is the best performer
on the training+validation set in the allotted time. The next
planners are chosen in the same manner on the portion of the
set not solved by previously selected planners. The top four
rows of Table 4 report the results. For reference, the next
four rows report the ceiling performance were the planners
selected from the test set.

If k = 2 planners are used, the coverage is 85.5%, lower
than that achievable by the proposed adaptive scheduling ap-
proach, 89.7% (see Figure 4). If one is willing to use more
planners, a better result is achieved with k = 3. However,
the coverage does not increase monotonically with k. More-
over, the performance appears to be much sensitive to the
change of k. Hence, it is challenging to find the best k.

Table 4: Percentage of solved tasks in the test set. Offline
method. Delfi split. Compare with performance in Figure 4.

Method Solved
(Greedy) Best 2 planners from train set 85.5%
(Greedy) Best 3 planners from train set 92.4%
(Greedy) Best 4 planners from train set 89.7%
(Greedy) Best 5 planners from train set 87.6%
(Greedy oracle) Best 2 planners from test set 93.8%
(Greedy oracle) Best 3 planners from test set 93.8%
(Greedy oracle) Best 4 planners from test set 93.1%
(Greedy oracle) Best 5 planners from test set 92.4%
Fast Downward Stone Soup 92.4%

Multiple planners; multiple splits; FDSS: A more so-
phisticated offline planner selection approach is Fast Down-
ward Stone Soup (Helmert et al. 2011), wherein the selection
of planners and their allotted time are optimized according to
a certain score function. Its result is reported in the last row
of Table 4. This result is achieved with four planners. The
coverage coincides with the above greedy approach when
taking k = 3.

Conclusion
Graphs encode the structural information of a planning task.
In this work, we have proposed a graph neural network ap-
proach for online planner selection. This approach outper-
forms Delfi, the winner of the Optimal Track of IPC 2018,
which treats a planning task as an image and applies CNNs
for selecting candidate planners. Our appealing results are
owing to the representation power of GNNs that address the
lack of permutation invariance and the negligence of node-
labeling information in CNNs.

We have also proposed an adaptive scheduling approach
to compensate the inaccuracy of a single predictive model,
through offering a chance for switching planners at halftime,
conditioned on the performance of the previously selected
one. Such an adaptive approach consistently increases the
number of solved tasks.

Overall, it appears that the lifted graph version is advanta-
geous over the grounded one, because of consistently better
performance. However, on average they are larger in size
and some are particularly enormous. Moreover, the size dis-
tribution is highly skewed in both versions. These factors
impose substantial challenges for the batch training of the
neural networks. An avenue of future research is to investi-
gate more efficient and scalable training approaches.

We have seen that the use of multiple planners beyond
two may improve the performance. Another line of future
work is to extend the proposed adaptive scheduling to more



than two planners. In this case, the training set construc-
tion becomes more and more complex and the model may
be challenging to train. Additionally, a principled approach
of setting the right number of planners is to be developed.
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