
The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19)

Red-Black Heuristics for Planning Tasks with Conditional Effects

Michael Katz
IBM Research

Yorktown Heights, NY, USA
michael.katz1@ibm.com

Abstract

Red-black planning is a state-of-the-art approach to satisfic-
ing classical planning. Red-black planning heuristics are at
the heart of the planner Mercury, the runner-up of a satisficing
track in the International Planning Competition (IPC) 2014
and a major component of four additional planners in IPC
2018, including Saarplan, the runner-up in the agile track.
Mercury’s exceptional performance is amplified by the fact
that conditional effects were handled by the planner in a triv-
ial way, simply by compiling them away. Conditional effects,
however, are important for classical planning, and many do-
mains require them for efficient modeling.
Consequently, we investigate the possibility of handling con-
ditional effects directly in the red-black planning heuristic
function, extending the algorithm for computing red-black
plans to the conditional effects setting. We show empirically
that red-black planning heuristics that handle conditional ef-
fects natively outperform the variants that compile this fea-
ture away, improving coverage on tasks where black variables
exist by 19%.

Introduction
Delete relaxation heuristics have played a key role in the
success of satisficing planning systems (Bonet and Geffner
2001; Hoffmann and Nebel 2001; Richter and Westphal
2010). A well-known pitfall of delete relaxation is its inabil-
ity to account for repetitive achievements of facts. It has thus
been an actively researched question from the outset how to
take some deletes into account, e. g. (Fox and Long 2001;
Gerevini, Saetti, and Serina 2003; Helmert 2004; Helmert
and Geffner 2008; Baier and Botea 2009; Cai, Hoffmann,
and Helmert 2009; Haslum 2012; Keyder, Hoffmann, and
Haslum 2012). The red-black planning framework (Domsh-
lak, Hoffmann, and Katz 2015), where a subset of red state
variables takes on the relaxed value-accumulating seman-
tics, while the other black variables retain the regular seman-
tics, introduced a convenient way of interpolating between
fully relaxed and regular planning.

Katz, Hoffmann, and Domshlak (2013b) introduced the
red-black framework and conducted a theoretical investiga-
tion of tractability of both plan existence and plan genera-
tion. In particular, they found that reversibility (Chen and

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Giménez 2010) plays a major role in making red-black plan
generation tractable. Following up and exploiting the no-
tion of invertibility, Katz, Hoffmann, and Domshlak (2013a)
devised practical red-black plan heuristics, non-admissible
heuristics generated by repairing fully delete-relaxed plans
into red-black plans. Observing that this technique often
suffers from dramatic over-estimation incurred by follow-
ing arbitrary decisions taken in delete-relaxed plans, Katz
and Hoffmann (2013) refined the approach to rely less on
such decisions, yielding a more flexible algorithm that de-
livers better search guidance. Finally, Katz and Hoffmann
(2014b) presented red-black DAG heuristics for a tractable
fragment characterized by DAG black causal graphs and
devised some enhancements targeted at making the result-
ing red-black plans executable in the real task, stopping the
search if they succeed in reaching the goal. Red-black DAG
heuristics are at the heart of the Mercury planner (Katz and
Hoffmann 2014a), the runner-up of the sequential satisficing
track in the International Planning Competition (IPC 2014).
The most recent IPC 2018 had seen four additional partic-
ipants (not counting variants) that employ red-black plan-
ning heuristics, namely Saarplan (Fickert et al. 2018), the
runner-up of the agile track; IBaCoP-2018 (Cenamor, de la
Rosa, and Fernández 2018), a portfolio-based planner that
has Mercury2014 as one of its components; and MERWIN
(Katz et al. 2018) and Cerberus (Katz 2018), both empow-
ering red-black planning heuristics with the novelty of the
heuristic in state (Katz et al. 2017).

All red-black heuristics to this day, however, are defined
in a classical planning formalism that does not include con-
ditional effects. Because support of conditional effects is
mandatory since IPC 2014, Mercury planner did handle con-
ditional effects, but in a naive way. This was done by simply
compiling them away in a straightforward fashion, multi-
plying out the actions (Nebel 2000). Obviously, the number
of actions grows exponentially, and thus the straightforward
compiling away does not scale well. Nebel (2000) presents
an alternative compilation that does not lead to an expo-
nential blow-up in the task size. This compilation, however,
does not preserve the delete relaxation. Thus, several delete
relaxation-based heuristics were adapted to natively sup-
port conditional effects (Haslum 2013; Röger, Pommeren-
ing, and Helmert 2014).

Our main goal in this work is to extend the red-black

7619

planning framework to tasks with conditional effects. To
that end, we extend the red-black planning formalism to
support conditional effects. We then generalize the defi-
nition of RSE-invertibility (Katz, Hoffmann, and Domsh-
lak 2013a) to tasks with conditional effects and show that
the fragment of red-black planning, characterized by DAG
black causal graphs over RSE-invertible variables, remains
tractable. Further, we show how an existing algorithm for
solving tasks belonging to this fragment can be adapted to
handle conditional effects. Finally, we empirically show the
added value of handling the conditional effects directly in
the heuristic over compiling them away. We conclude the
paper with a discussion of our results and future work.

Background
In order to handle classical planning tasks with conditional
effects, we consider the red-black planning finite-domain
representation (RB) framework (Domshlak, Hoffmann, and
Katz 2015), a generalization of both the finite-domain rep-
resentation and the monotonic finite-domain representation
formalisms. We extend the formalism of RB to handle ac-
tions with conditional effects. A red-black (RB) planning
task is a tuple Π = 〈VB,VR, O, s0, s?〉. VB is a set of black
state variables and VR is a set of red state variables, where
VB ∩ VR = ∅ and each v ∈ V := VB ∪ VR is asso-
ciated with a finite domain D(v). The initial state s0 is a
complete assignment to V , the goal s? is a partial assign-
ment to V . Each action o is a pair 〈pre(o), effs(o)〉, where
pre(o) is a partial assignment to V called precondition and
effs(o) is a set of effects. Each effect e ∈ effs(o) is a tuple
〈cond , v, ϑ〉, where cond is a partial assignment called ef-
fect condition, v ∈ V is the effect variable, and ϑ ∈ D(v)
is the effect value. We often refer to (partial) assignments
as sets of facts, i. e., variable-value pairs v = d. For a par-
tial assignment p, vars(p) denotes the subset of V instan-
tiated by p. For V ′ ⊆ vars(p), p[V ′] denotes the value of
V ′ in p. For the sake of readability, by vars(effs(o)) we de-
note the subset of variables V that appear in effs(o), that is
vars(effs(o)) = {v | 〈cond , v, ϑ〉 ∈ effs(o)}. Also, for
the sake of readability, by effs(o)[V ′] we refer to the sub-
set of conditional effects that affect variables in V ′, that is
effs(o)[V ′] = {〈cond , v, ϑ〉 ∈ effs(o) | v ∈ V ′}.

A state s assigns each v ∈ V a non-empty subset s[v] ⊆
D(v), where |s[v]| = 1 for all v ∈ VB. A state s agrees with
the partial assignment p, denoted by s |= p, if p[v] ∈ s[v]
for all v ∈ vars(p). An action o is applicable in state s
if s |= pre(o). An effect 〈cond , v, ϑ〉 ∈ effs(o) fires in
state s if s |= cond . Applying o in s changes the value
of v for all firing effects 〈cond , v, ϑ〉 ∈ effs(o) as fol-
lows. If v ∈ VB, the value is changed to {ϑ}. Otherwise (if
v ∈ VR), the new value of v is s[v]∪{ϑ}. By sJ〈o1, . . . , ok〉K
we denote the state obtained from sequential application
of o1, . . . , ok. An action sequence 〈o1, . . . , ok〉 is a plan if
s?[v] ∈ s0J〈o1, . . . , ok〉K[v] for all v ∈ vars(s?). Effects
e = 〈cond , v, ϑ〉 and e′ = 〈cond ′, v, ϑ′〉 of the action o are
conflicting if there exists a state s reachable from the ini-
tial state such that (a) s |= pre(o) (b) both s |= cond and
s |= cond ′, and (c) ϑ 6= ϑ′.

Π is a finite-domain representation (FDR) planning

p0

p1

fl3

fl2

fl1

fl0

f t

stop fl0

oc: L=fl0, B0=t

forgot-keys fl0 p0

oc: L=fl0, B0=t

(b)

L

B0

S0

B1
S1

(a) (c)

Figure 1: Miconic example (a), a domain transition graph of
a variable S0 (b), and the causal graph (c).

task if VR = ∅, and is a monotonic finite-domain rep-
resentation (MFDR) planning task if VB = ∅. Plans for
MFDR tasks (i. e., for delete-relaxed tasks) can be gener-
ated in polynomial time. A key part of many satisficing plan-
ning systems is based on exploiting this property for deriv-
ing heuristic estimates, via delete-relaxing the task at hand.
Generalizing this to red-black planning, the red-black re-
laxation of an FDR task Π relative to VR is the RB task
Π∗+

VR = 〈V \ VR,VR, O, s0, s?〉. A plan for Π∗+
VR is a red-

black plan for Π, and the length of a shortest possible red-
black plan is denoted h∗+

VR(Π). For arbitrary states s, h∗+
VR(s)

is defined via the RB task 〈V \VR,VR, O, s, s?〉. If VR = V ,
then red-black plans are relaxed plans, and h∗+

VR coincides
with the optimal delete relaxation heuristic h+.

The absence of conflicting effects is typically assumed for
FDR tasks. In delete relaxations of these tasks, or more gen-
erally in red-black relaxations, such an assumption may not
hold anymore, since reachable red-black states may corre-
spond to states not reachable in the original task. It is pos-
sible to impose stronger assumptions, ensuring the absence
of conflicting effects in red-black relaxations, such as for-
bidding effects of the same operator that set different values
to the same variable. Such assumptions, however, may not
hold in practice on existing benchmark sets. To simplify the
exposition of our ideas, we resolve this issue by requiring
variables with possibly conflicting effects, that is, if there
exists an operator with two conditional effects setting that
variable to different values, to be marked as red in our red-
black relaxations.

We use a slightly modified miconic-simpleadl task with
two passengers as our running example. An elevator moves
between four floors and needs to move passengers from their
original floors to their destination floors. Passenger p0 is
originally at floor fl3 and needs to get to floor fl0. Pas-
senger p1 starts from floor fl0 and goes to floor fl2. The
example is depicted in Figure 1(a), with floors, passengers
and their initial and goal locations shown. There is one vari-
able for elevator location, L, with initial value fl0, and two
variables for each passenger, encoding whether the passen-
ger was boarded, Bi and whether she was served, Si (with
values t and f that stand for true and false). There are ac-

7620

tions changing the value of variable L: up fli flj and down
fli flj . These actions have one unconditional effect each. In
addition, there are actions that stop at a floor, picking up pas-
sengers from their origin floors and embarking passengers to
their destinations. The stop fli actions are as follows.

stop fl0 =

〈
{L=fl0},


〈∅, B0, f〉,

〈{B0=t}, S0, t〉,
〈{S1=f}, B1, t〉


〉
,

stop fl2 =〈{L=fl2}, {〈∅, B1, f〉, 〈{B1=t}, S1, t〉}〉, and

stop fl3 =〈{L=fl3}, {〈{S0=f}, B0, t〉}〉.
Note that there are only actions stop fl0, stop fl2, and

stop fl3. There is no action stop fl1, since the floor fl1 is
neither origin nor destination of any passenger.

In addition, there are actions forgot-keys fl pwith one un-
conditional effect each, taking the embarked passenger back
to the elevator on her destination floor. These actions are as
follows.

forgot-keys fl0 p0=〈{L=fl0, B0=t, S0=t}, {〈∅, S0, f〉}〉,

forgot-keys fl2 p1=〈{L=fl2, B1=t, S1=t}, {〈∅, S1, f〉}〉.

Focusing on action stop fl0, a straightforward approach
of handling conditional effects would multiply out the vari-
ables in conditions of the effects. As a result, we obtain four
actions:

• 〈{L=fl0, B0=f, S1=f}, {〈∅, B0, f〉, 〈∅, B1, t〉}〉,
• 〈{L=fl0, B0=t, S1=f}, {〈∅, B0, f〉,〈∅, B1, t〉,〈∅, S0, t〉}〉,
• 〈{L=fl0, B0=f, S1=t}, {〈∅, B0, f〉}〉, and

• 〈{L=fl0, B0=t, S1=t}, {〈∅, B0, f〉, 〈∅, S0, t〉}〉.
A real optimal plan has length 6 (up fl0 fl3, stop fl3,

down fl3 fl0, stop fl0, up fl0 fl2, stop fl2), a relaxed plan
has length 5 (no need to go back down to fl0). If we paint L
black, then h∗+

VR(s0) = 6 as desired.
Tractable fragments of red-black planning have been

identified using standard structures, domain transition
graph and causal graph (Helmert 2006). The domain tran-
sition graph DTGΠ(v) of a variable v ∈ V is a labeled
digraph with vertices D(v). The graph has an arc (d, d′) in-
duced by action o if 〈cond , v, d′〉 ∈ effs(o), and either (i)
pre(o)[v] = d or cond [v] = d, or (ii) v 6∈ vars(pre(o)) ∪
vars(cond). The arc is labeled with its induced action o and
its outside condition pre(o)[V \ {v}] ∪ cond [V \ {v}]. In
contrast to the case of no conditional effects, here we cannot
know in advance which effects will fire, and thus the notion
of outside effect for an edge in the domain transition graph
is not well defined. The domain transition graph of the vari-
able S0 in our example is shown in Figure 1(b). The action
labels are above the arcs and the outside conditions (marked
by oc) are below the arcs.

The causal graph CGΠ of Π is a digraph with vertices
V . An arc (v, v′) is in CGΠ if v 6= v′ and there exists an
action o ∈ O such that either (i) the domain transition graph
DTGΠ(v′) of v′ has some arc labeled with outside condition
on the variable v, or (ii) both v, v′ ∈ vars(effs(o)).

The black causal graph CGB
Π of Π is the sub-graph of

CGΠ induced by VB. Figure 1(c) depicts the causal graph of
the example task. If we paint only L black, then the black
causal graph is arc-empty. If we paint also S0 and S1 black,
then the black causal graph is a DAG.

Finally, as mentioned above, the notion of reversibility
plays a major role in the tractability of red-black planning
fragments. A red-black planning task is reversible if for ev-
ery state s reachable from the initial state s0, there exists a
state s′ reachable from s such that s′[v] = s0[v] for all black
variables v ∈ VB.

Invertibility
The notion of invertibility introduces a sufficient criterion
for tractability of red-black planning for tasks with acyclic
black causal graphs (Katz, Hoffmann, and Domshlak 2013a;
Katz and Hoffmann 2013; Domshlak, Hoffmann, and Katz
2015). This is due to the fact that in the case of acyclic black
causal graphs invertibility implies reversibility. The defini-
tion of invertibility for tasks without conditional effects is as
follows. A DTG arc (d, d′) is relaxed side effects invert-
ible, RSE-invertible for short, if there exists an arc (d′, d)
with outside condition φ′ ⊆ φ ∪ ψ where φ and ψ are the
outside condition, respectively, outside effect of (d, d′). A
variable v is RSE-invertible if all arcs in DTGΠ(v) are RSE-
invertible, and an RB task is RSE-invertible if all its black
variables are.

The motivation behind the definition is as follows. If the
black causal graph is acyclic, every action affects at most
one black variable. Since red variables accumulate their val-
ues, the only effect we need to invert is the black one. This
corresponds to inverting a single arc (d, d′) in a domain tran-
sition graph. Thus, we need to ensure that for every arc
(d, d′) traversed in the domain transition graph, there ex-
ists a corresponding inverse arc (d′, d). That arc must be
traversable after (d, d′). Furthermore, since the outside con-
dition φ of (d, d′) is not changed by traversing the arc, and
the outside effect ψ consists of red variables only, and thus
can only accumulate new values by traversing the arc, both
φ and ψ will remain true and can be used as conditions for
the inverse arc.

In the presence of conditional effects we need to consider
which effects fire, and thus the definition of RSE-invertible
arcs is adapted as follows.

Definition 1 Let v ∈ V be some variable and o be some ac-
tion affecting v. Let (d, d′) be some arc in the domain tran-
sition graph DTGΠ(v), induced by 〈cond , v, d′〉 ∈ effs(o)
of action o and let φ be its outside condition. The arc (d, d′)
is relaxed side effects invertible, RSE-invertible for short, if
there exists an induced-by-the-action o′ arc (d′, d) with out-
side condition φ′, such that φ′ ⊆ φ ∪ ψ, where ψ = {v′ =
d′′ | 〈cond ′, v′, d′′〉 ∈ effs(o), v′ 6= v, cond ′ ⊆ φ}.

Intuitively, the outside condition of the reverting arc
should either hold before traversing the reverted arc or be
achieved as a side effect of traversing the arc. For the latter,
we can consider only the effects that surely fire.

7621

As before, a variable v is RSE-invertible if all arcs in
DTGΠ(v) are RSE-invertible, and an RB task is RSE-
invertible if all its black variables are. In what follows,
we show that the main theorem of Katz, Hoffmann, and
Domshlak (2013a), which enabled devising practical red-
black heuristics, holds also for tasks with conditional effects.

Theorem 1 Any RSE-invertible RB task with acyclic black
causal graph is reversible.

Proof: We follow the proof of Katz, Hoffmann, and Domsh-
lak (2013a) and show that every action application can be
undone. Specifically, we show that given a state s and an
action o applicable to s, from the state sJ〈o〉K we can reach
a state s′ so that s′[VB] = s[VB]. If all variables affected
by o are red, s′ := sJ〈o〉K fits the requirement. Otherwise,
o affects exactly one black variable v. Let (d, d′) be the arc
in DTGΠ(v) that corresponds to the effect 〈cond , v, d′〉 ∈
effs(o) fired in s, let (d′, d) be the inverse arc, and let o′ be
the action that induces (d′, d) with outside condition φ′ as in
Definition 1. Then o′ is applicable in sJ〈o〉K: Using the nota-
tions from above, pre(o′) ⊆ φ′∪{(v, d′)}, where φ′ ⊆ φ∪ψ.
As discussed above, both φ and ψ are true in sJ〈o〉K. Clearly,
s′ := sJ〈o, o′〉K has the required property. �

In the example, variable L is RSE-invertible, since up
and down actions invert each other. The variables B0 and
B1 are not RSE-invertible, since edges that correspond to
stop actions can be inverted only by other stop actions.
These pairs of stop actions correspond to boarding and em-
barking the passenger, and therefore the elevator location
value would not match. The variables S0 and S1 are RSE-
invertible, as can be seen in Figure 1(b). Note that while
the edge from t to f corresponds to a non-conditional effect
and thus the outside condition comes entirely from the pre-
condition, the edge from f to t is induced by a conditional
effect 〈{B0=t}, S0, t〉, and thus the outside condition comes
partially from the precondition and partially from the effect
condition.

Red-Black DAG Heuristics
Katz and Hoffmann (2013) provide an algorithm for RSE-
invertible RB tasks with acyclic black causal graphs and
no conditional effects. Figure 2 shows the adaptation of
Katz and Hoffmann’s pseudo-code to conditional effects,
with major differences highlighted in red. The original al-
gorithm assumes as input the set R+ of preconditions and
goals on red variables in a fully delete-relaxed plan, i. e.,
R+ = s?[VR] ∪

⋃
o∈π+ pre(o)[VR] where π+ is a relaxed

plan for Π. The adaptation also requires collecting the condi-
tions of the effects that fire in the relaxed plan, and therefore
R+ will also include those conditions.

The original algorithm then successively selected achiev-
ing actions for R+, until all these red facts are true. Our
algorithm, however, in the presence of conditional effects,
instead of selecting an action, is required to select a partic-
ular effect of an action. Then, the black condition of that
effect should be achieved together with action’s black pre-
condition. Throughout the algorithm, R denotes the set of

Algorithm : REDBLACKPLANNINGCE(Π, R+)

main
// Π = 〈VB,VR, O, s0, s?〉
global R, B ← ∅, π ← 〈〉
UPDATE()
while R 6⊇ R+

do



O′ = {〈o, c〉 | o ∈ O, 〈c, v, ϑ〉 ∈ effs(o),
pre(o)∪c ⊆ B ∪R,
〈v, ϑ〉 ∈ (R+ \R)}

Select 〈o, c〉 ∈ O′

if pre(o)[VB]∪c[VB] 6⊆ s0JπK
then π ← π ◦ ACHIEVE(pre(o)[VB]∪c[VB])

π ← π ◦ 〈o〉
UPDATE()

if s?[VB] 6⊆ s0JπK
then π ← π ◦ ACHIEVE(s?[VB])

return π

procedure UPDATE()
R← s0JπK[VR]
B ← B ∪ s0JπK[VB]
for v ∈ VB, ordered topologically by the black causal graph

do B ← B ∪ DTGΠ(v)|R∪B

procedure ACHIEVE(g)
sB0 ← s0JπK[VB]
sB? ← g
OB ← {oB | o ∈ O, pre(o) ⊆ R ∪B,

⋃
〈c,v,ϑ〉∈effs(o)[VB]

c ⊆ R ∪B,

pre(oB) = pre(o)[VB],
effs(oB) = {〈c[VB], v, ϑ〉 | 〈c, v, ϑ〉 ∈ effs(o)[VB]}}

〈o′B1 , . . . , o′Bk 〉 ← an FDR plan for ΠB = 〈VB, OB, sB0 , s
B
? 〉

return 〈o′1, . . . , o′k〉

Figure 2: Red-black planning algorithm.

red facts already achieved by the current red-black plan pre-
fix π; B denotes the set of black variable values that can be
achieved using only red outside conditions from R.

How the algorithm works: For each selected achieving
action and effect pair (or for the goal), if the black vari-
able values do not match the precondition of the selected
action and effect condition (or the goal), the algorithm at-
tempts to achieve the aforementioned partial state. For that,
ACHIEVE(g) is called, which finds a sequence of actions
achieving the partial state by solving the black subtask ΠB

with invertible variables.
Katz and Hoffmann (2014b) present a simple algorithm

that solves the black subtask: Starting at the leaf variables
and working up to the roots, the plan is constructed by aug-
menting the partial plan with plan fragments that correspond
to paths in domain transition graphs, bringing the supporting
variables into place 1. They show the algorithm runtime to
be polynomial in the size of ΠB and the length of the plan

1A similar algorithm was mentioned, but not used, by Helmert
(2006)

7622

returned, which, although worst-case exponential in the size
of ΠB, is practically efficient. As conditional effects corre-
spond to edges in domain transition graphs, the algorithm
works verbatim for tasks with conditional effects.

Although we impose a restriction to avoid conflicting ef-
fects on black variables, it is worth mentioning that our
adapted algorithm can handle such effects, in the sense that
it will produce a sequence of actions that corresponds to a
red-black plan if the “right” effect is chosen to resolve the
conflict. In ACHIEVE(g), recall that the effects are restricted
to a single variable, and thus actions with conflicting effects
can simply be split into multiple actions. In UPDATE(), the
update is performed using DTG edges, and thus is not af-
fected by conflicting effects. Finally, in the main procedure,
an action and its effect are selected, and therefore the main
procedure is also not affected by conflicting effects.

Experimental Evaluation
In order to evaluate the benefit of natively supporting con-
ditional effects in red-black planning heuristics, we adapted
the existing implementation of red-black planning heuristics
on top of the current Fast Downward framework (Helmert
2006). We compared our native support (NS) to the original
implementation on top of a transformation that multiplies
out conditional effects (MO), a baseline for our comparison.
We perform a greedy best first search with a single queue, or-
dered by the red-black heuristic. The heuristic is obtained by
solving a red-black planning task with a black DAG causal
graph. The red-black planning task is obtained by coloring
the RSE-invertible variables black as long as the black part
is a DAG (Domshlak, Hoffmann, and Katz 2015).

The experiments were performed on Intel(R) Xeon(R)
CPU E7-8837 @2.67GHz machines, with the time and
memory limit of 30min and 2GB, respectively. We per-
formed our evaluation on the existing set of benchmark do-
mains with conditional effects. Only a handful of domains
from previous International Planning Competitions (IPC)
have conditional effects but no axioms. Therefore, follow-
ing Haslum (2013), we also use problems generated by the
conformant-to-classical planning compilation (T0) (Palacios
and Geffner 2009) and the finite-state controller synthe-
sis compilation (FSC) (Bonet, Palacios, and Geffner 2009).
In addition, following Röger, Pommerening, and Helmert
(2014), we use the briefcase world domain from the IPP
benchmark collection (Köhler 1999) and the Miconic sim-
pleadl version from the benchmark set of the International
Planning Competition (IPC2000), as it has conditional ef-
fects but no derived predicates after grounding with Fast
Downward. Finally, we use the domains from the most re-
cent IPC 2018. This results in total of 679 tasks in 32 do-
mains, shown in Table 1. The table also depicts the num-
ber of tasks per domain, as well as the per-domain sum-
mary of the number of tasks for which a relevant SAS+ rep-
resentation could be constructed and the number of tasks
where at least one RSE-invertible variable was found. There
are 28 cases, all in IPC2018 domains where the translator
was not able to finish translating PDDL to SAS+ representa-
tion, namely four tasks in caldera-sat18, six in flashfill-sat18,

multiply out native support
Domain # Constr. Inv. Constr. Inv.
briefcaseworld 50 10 10 50 50
cavediving-14-adl 20 20 20 20 20
citycar-sat14-adl 20 20 0 20 0
fsc-blocks 14 0 0 14 0
fsc-grid-a1 16 1 0 16 0
fsc-grid-a2 2 1 0 2 0
fsc-grid-r 16 0 0 16 0
fsc-hall 2 1 0 2 0
fsc-visualmarker 7 0 0 7 0
gedp-ds2ndp 24 4 4 24 0
miconic-simple 150 150 150 150 150
t0-adder 2 0 0 2 2
t0-coins 30 20 15 30 30
t0-comm 25 25 0 25 0
t0-grid-dispose 15 0 0 15 15
t0-grid-push 5 0 0 5 5
t0-grid-trash 1 0 0 1 1
t0-sortnet 5 0 0 5 0
t0-sortnet-alt 6 1 0 6 0
t0-uts 29 13 0 29 4
agricola18 20 20 0 20 0
caldera18 20 16 0 16 0
caldera-sp18 20 20 0 20 0
data-network18 20 20 20 20 20
flashfill18 20 1 0 14 0
nurikabe18 20 11 11 20 20
organic-synt18 20 3 0 3 0
organic-synt-sp18 20 19 2 19 2
settlers18 20 0 0 20 0
snake18 20 20 0 20 0
spider18 20 20 0 20 0
termes18 20 20 20 20 20
Sum 679 436 252 651 339

Table 1: Per-domain summary of the number of tasks (#);
number of constructed (Constr.) and number of tasks with
invertible variables (Inv.) for both approaches.

17 in organic-synthesis-sat18, and one in organic-synthesis-
split-sat18, for both our approach and the baseline. In all
other cases, when the tasks could not be constructed, it was
due to the transformation that multiplied out conditional ef-
fects resulting in a task that was too large to fit into mem-
ory. This happened in 243 out of the total 679 tasks. Note
that there is no way around creating the transformed task
in order to check RSE-invertibility of variables in the trans-
formed task. Then, an additional check is performed, which
invertible variables may have conflicting effects in the red-
black relaxation, to ensure these variables are marked as
red. This happens in two tasks of the t0-adder domain. If
no non-conflicting RSE-invertible variables are found, red-
black heuristics are effectively equivalent to the FF heuristic
(Hoffmann and Nebel 2001). Importantly, in such cases, for
the baseline approach, the FF heuristic would be constructed

7623

100 101 102 103

100

101

102

103

multiply out

na
tiv

e
su

pp
or

t
of invertible variables

Figure 3: Comparison of the number of RSE-invertible vari-
ables with the baseline multiplying out conditional effects
and the native support for conditional effects.

on top of the transformed task. Looking at the table, there are
343 tasks in 14 domains where either of the two approaches
found any RSE-invertible variables. In what follows, we re-
strict our attention to these tasks.

Figure 3 compares the number of RSE-invertible vari-
ables for each of these tasks. Each point corresponds to a
task, showing the number of RSE-invertible variables for
the multiply-out approach and for the native one. Observe
that the number of RSE-invertible variables mostly increases
when moving from compiling away conditional effects to
natively supporting them. The points on the “multiply out”
axis correspond to four tasks in gedp-ds2ndp domain, where
the multiply-out transformation resulted in a task with fif-
teen RSE-invertible variables, while the original task has no
RSE-invertible variables under our new definition of RSE-
invertibility in the presence of conditional effects. For the
reverse case (“native support” axis), there are 91 tasks where
there could not be found any RSE-invertible variables in the
transformed task,2 and there was at least one RSE-invertible
variable under our new definition, allowing us to use the red-
black planning heuristic, rather than the base FF heuristic.

Turning our attention to the heuristics performance,3 Ta-
ble 2 shows the per-domain coverage, comparing our sug-
gested approach to the baseline. The second column de-

2In some of these cases, the transformed task could not even be
created, due to hitting the memory bound.

3We exclude from our task set the two tasks of t0-adder where
all invertible variables appear in conditional effects that may con-
flict in the red-black relaxation and thus are marked as red.

Domain # Inv. mult. out native supp.
briefcaseworld 50 50 10 50
cavediving-14-adl 20 20 7 7
gedp-ds2ndp 24 4 0 4
miconic-simple 150 150 150 150
t0-coins 30 30 20 20
t0-grid-dispose 15 15 0 15
t0-grid-push 5 5 0 3
t0-grid-trash 1 1 0 0
t0-uts 29 4 3 3
data-network18 20 20 0 0
nurikabe18 20 20 5 6
organic-synt-sp18 20 2 0 0
termes18 20 20 13 13
Sum 404 341 208 271

Table 2: Per-domain coverage for domains with invertible
variables, tasks for which at least one approach found in-
vertible variables. Best performers are marked in bold.

scribes the overall number of instances in each domain,
while the third column shows the number of instances on
which at least one of the approaches found invertible vari-
ables (Inv.). The last two colums report the number of solved
tasks for the compared approaches. The table clearly shows
the benefit of handling conditional effects natively in the
heuristic – the coverage never decreases, remains the same
in eight out of 12 domains, and increases by 63 instances
in five domains, namely by 40, 15, 4, 3, and 1 in brief-
caseworld, t0-grid-dispose, gedp-ds2ndp, t0-grid-push, and
nurikabe-sat18, respectively. Note that if we compare the
coverage on all instances of all 32 domains, without consid-
ering whether invertible variables exist or not, the baseline
solves 314 out of 679 tasks, while our approach solves 438.
However, on tasks where no RSE-invertible variables were
found, such comparison would essentially be between the FF
heuristics with and without task transformation. While such
comparison is interesting by itself, it is outside the scope of
our current work.

In order to show a per-instance comparison, Figure 4 com-
pares the number of heuristic evaluations performed until
a solution is found. First, observe that out of the 63 points
on the right border that correspond to tasks in our restricted
set not solved with the baseline approach, but solved with
our approach, there are 57 that are now solved after up to
10000 evaluations. An additional six tasks are going as high
as 36911 evaluations. There are only six tasks, all in brief-
caseworld, where the performance got negligably worse (by
at most 77 evaluated nodes in the extreme case), remained
the same on 58 tasks, and got better on 208 tasks, includ-
ing the 63 tasks where the baseline was not able to solve
the task at all. The other 145 tasks, where both solved the
task and the native support performed better, are from the
miconic-simpleadl domain (125 tasks), t0-coins (17 tasks),
and t0-uts (three tasks), with the improvement in t0-coins
being negligable. This brings us to the remaining 128 tasks.
Arguably, the most important feature of red-black planning

7624

100 102 104 106

100

102

104

106

un
s.

uns.

multiply out

na
tiv

e
su

pp
or

t
briefcaseworld cavediving-14-adl gedp-ds2ndp
miconic-simpleadl nurikabe-sat18 t0-coins
t0-grid-dispose t0-grid-push t0-uts
termes-sat18

Figure 4: Domain-wise comparison of the number of eval-
uations performed with the baseline multiplying out condi-
tional effects and the native support for conditional effects.

heuristics is the similarity of red-black plans to real plans.
In many cases, a red-black plan for the initial state is al-
ready a real plan and thus no search needs to be performed
at all. With the baseline, this happens in 27 tasks, 25 tasks
in miconic-simpleadl and two tasks in briefcaseworld. With
our approach of supporting conditional effects natively, this
happens in all the aforementioned cases, and more. In total,
the real plan is found in the initial state for 155 tasks. The
additional 128 tasks are partitioned to 125 tasks of miconic-
simpleadl and three tasks in t0-uts. Consequently, all the 150
tasks of the miconic-simpleadl domain are now solved with-
out search. These 155 tasks, that are solved by our approach
without performing any search, correspond to the points on
the horizontal line in Figure 4, for the number of evaluations
equal to one.

Finally, to measure the heuristic computation time differ-
ence, Figure 5 shows the per-instance total time comparison.
Here as well, the picture is clear. The vast majority of points
are under the diagonal, with the points on the rightmost bor-
der correspond to the tasks solved by our method but not
by the multiply out approach. Many of the tasks that are not
solved by the baseline approach are now solved in under one
second. Focusing now on tasks that are solved by both ap-
proaches, while in most cases the improvement is moder-
ate, there are tasks where the total time is improved by up
to three orders of magnitude. This clearly demonstrates the
practical benefit of supporting conditional effects natively in

10−2 10−1 100 101 102 103

10−2

10−1

100

101

102

103

un
s.

uns.

multiply out

na
tiv

e
su

pp
or

t

total time

Figure 5: Comparison of the total time until a solution is
found with the baseline multiplying out conditional effects
and the native support for conditional effects.

red-black planning heuristics over the previous methods of
compiling conditional effects away.

Conclusions and Future Work
We have shown how to adapt red-black planning to sup-
port conditional effects, an important modeling feature in
planning. To that end, we have adapted the formalism of
red-black planning to include conditional effects and have
shown how to derive practical red-black planning heuris-
tics. For that, we extended the definition of invertibility of
variables and adapted the existing algorithms for tractable
red-black planning for the classical formalism to work in
the presence of conditional effects. To measure the benefit
of natively supporting conditional effects in the red-black
planning heuristic, we performed an extensive experimen-
tal evaluation. We compared the native support for condi-
tional effects in red-black planning heuristics with the exist-
ing naive way of supporting conditional effects by compil-
ing them away. Our evaluation clearly shows the benefit of
supporting conditional effects natively.

For future work, we intend to explore natively supporting
additional non-classical features in red-black planning, such
as axioms and derived predicates (McDermott et al. 1998;
Thiébaux, Hoffmann, and Nebel 2005). For conditional ef-
fects, one issue not fully covered in the current work is con-
flicting effects. We intend to further extend the framework
and adapt our proofs to cover conflicting effects, allowing
us to paint their respective variables black. Another impor-
tant direction is to extend the fully unrelaxed applicability
of the resulting red-black plans. Current red-black planning

7625

heuristics face two choice points. The first: what action and
effect to select to achieve some currently unachieved but re-
quired red fact; the second: how to achieve the precondition
and the condition of the action effect selected. Preferring real
paths in the second choice point has significantly improved
unrelaxed applicability. Not much was done, however, for
the first choice point, except for preferring action effects that
can fire. Selecting these action effects in a way that can im-
prove unrelaxed applicability is a very promising research
direction with high potential for practical value.

References
Baier, J. A., and Botea, A. 2009. Improving planning per-
formance using low-conflict relaxed plans. In Proc. ICAPS
2009, 10–17.
Bonet, B., and Geffner, H. 2001. Planning as heuristic
search. AIJ 129(1):5–33.
Bonet, B.; Palacios, H.; and Geffner, H. 2009. Automatic
derivation of memoryless policies and finite-state controllers
using classical planners. In Proc. ICAPS 2009, 34–41.
Cai, D.; Hoffmann, J.; and Helmert, M. 2009. Enhanc-
ing the context-enhanced additive heuristic with precedence
constraints. In Proc. ICAPS 2009, 50–57.
Cenamor, I.; de la Rosa, T.; and Fernández, F. 2018.
IBaCoP-2018 and IBaCoP2-2018. In IPC-9 planner ab-
stracts, 9–10.
Chen, H., and Giménez, O. 2010. Causal graphs and struc-
turally restricted planning. Journal of Computer and System
Sciences 76(7):579–592.
Domshlak, C.; Hoffmann, J.; and Katz, M. 2015. Red-black
planning: A new systematic approach to partial delete relax-
ation. AIJ 221:73–114.
Fickert, M.; Gnad, D.; Speicher, P.; and Hoffmann, J.
2018. Saarplan: Combining saarland’s greatest planning
techniques. In IPC-9 planner abstracts, 11–16.
Fox, M., and Long, D. 2001. Stan4: A hybrid planning
strategy based on subproblem abstraction. AI Magazine
22(3):81–84.
Gerevini, A. E.; Saetti, A.; and Serina, I. 2003. Planning
through stochastic local search and temporal action graphs
in LPG. JAIR 20:239–290.
Haslum, P. 2012. Incremental lower bounds for additive cost
planning problems. In Proc. ICAPS 2012, 74–82.
Haslum, P. 2013. Optimal delete-relaxed (and semi-relaxed)
planning with conditional effects. In Proc. IJCAI 2013,
2291–2297.
Helmert, M., and Geffner, H. 2008. Unifying the causal
graph and additive heuristics. In Proc. ICAPS 2008, 140–
147.
Helmert, M. 2004. A planning heuristic based on causal
graph analysis. In Proc. ICAPS 2004, 161–170.
Helmert, M. 2006. The Fast Downward planning system.
JAIR 26:191–246.

Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. JAIR 14:253–
302.
Katz, M., and Hoffmann, J. 2013. Red-black relaxed plan
heuristics reloaded. In Proc. SoCS 2013, 105–113.
Katz, M., and Hoffmann, J. 2014a. Mercury planner: Push-
ing the limits of partial delete relaxation. In IPC-8 planner
abstracts, 43–47.
Katz, M., and Hoffmann, J. 2014b. Pushing the lim-
its of partial delete relaxation: Red-black DAG heuristics.
In ICAPS 2014 Workshop on Heuristics and Search for
Domain-independent Planning, 40–44.
Katz, M.; Lipovetzky, N.; Moshkovich, D.; and Tuisov, A.
2017. Adapting novelty to classical planning as heuristic
search. In Proc. ICAPS 2017, 172–180.
Katz, M.; Lipovetzky, N.; Moshkovich, D.; and Tuisov, A.
2018. Merwin planner: Mercury enchanced with novelty
heuristic. In IPC-9 planner abstracts, 53–56.
Katz, M.; Hoffmann, J.; and Domshlak, C. 2013a. Red-black
relaxed plan heuristics. In Proc. AAAI 2013, 489–495.
Katz, M.; Hoffmann, J.; and Domshlak, C. 2013b. Who
said we need to relax all variables? In Proc. ICAPS 2013,
126–134.
Katz, M. 2018. Cerberus: Red-black heuristic for planning
tasks with conditional effects meets novelty heuristic and en-
chanced mutex detection. In IPC-9 planner abstracts, 47–
51.
Keyder, E.; Hoffmann, J.; and Haslum, P. 2012. Semi-
relaxed plan heuristics. In Proc. ICAPS 2012, 128–136.
Köhler, J. 1999. Handling of conditional effects and neg-
ative goals in IPP. Technical Report 128, University of
Freiburg, Department of Computer Science.
McDermott, D.; Ghallab, M.; Howe, A.; Knoblock, C.; Ram,
A.; Veloso, M.; Weld, D.; and Wilkins, D. 1998. PDDL
– The Planning Domain Definition Language – Version
1.2. Technical Report CVC TR-98-003/DCS TR-1165, Yale
Center for Computational Vision and Control, Yale Univer-
sity.
Nebel, B. 2000. On the compilability and expressive power
of propositional planning formalisms. JAIR 12:271–315.
Palacios, H., and Geffner, H. 2009. Compiling uncertainty
away in conformant planning problems with bounded width.
JAIR 35:623–675.
Richter, S., and Westphal, M. 2010. The LAMA planner:
Guiding cost-based anytime planning with landmarks. JAIR
39:127–177.
Röger, G.; Pommerening, F.; and Helmert, M. 2014. Op-
timal planning in the presence of conditional effects: Ex-
tending LM-Cut with context splitting. In Proc. ECAI 2014,
765–770.
Thiébaux, S.; Hoffmann, J.; and Nebel, B. 2005. In defense
of PDDL axioms. AIJ 168(1–2):38–69.

7626

