
Heuristics and Symmetries in Classical Planning
Alexander Shleyfman

Technion, Haifa, Israel
alesh@tx.technion.ac.il

Michael Katz
IBM Haifa Research Lab, Israel

katzm@il.ibm.com

Malte Helmert and Silvan Sievers and Martin Wehrle
University of Basel, Switzerland

{malte.helmert,silvan.sievers,martin.wehrle}@unibas.ch

Abstract
Heuristic search is a state-of-the-art approach to classical
planning. Several heuristic families were developed over
the years to automatically estimate goal distance information
from problem descriptions. Orthogonally to the development
of better heuristics, recent years have seen an increasing in-
terest in symmetry-based state space pruning techniques that
aim at reducing the search effort. However, little work has
dealt with how the heuristics behave under symmetries. We
investigate the symmetry properties of existing heuristics and
reveal that many of them are invariant under symmetries.

Introduction
Many current algorithms for classical planning are based on
heuristic search in the problem state space (e. g., Hoffmann
and Nebel 2001; Gerevini and Serina 2002; Helmert 2006;
Richter and Westphal 2010). These planners use automati-
cally derived heuristic functions to guide the search towards
goal states. Their heuristics are often classified into four
families: abstractions (e. g., Culberson and Schaeffer 1998;
Edelkamp 2001; Helmert et al. 2014; Katz and Domshlak
2010), delete relaxations (e. g., Bonet and Geffner 2001;
Hoffmann and Nebel 2001; Keyder and Geffner 2008; Katz,
Hoffmann, and Domshlak 2013), critical paths (Haslum and
Geffner 2000), and landmarks (e. g., Richter, Helmert, and
Westphal 2008; Karpas and Domshlak 2009; Helmert and
Domshlak 2009; Keyder, Richter, and Helmert 2010).

Besides heuristics, several state pruning methods have
been proposed to alleviate the state explosion problem. One
such method is symmetry-based state pruning, which has re-
cently seen increasing interest in domain-independent plan-
ning (Pochter, Zohar, and Rosenschein 2011; Domshlak,
Katz, and Shleyfman 2012; 2013). Symmetry pruning com-
putes equivalence classes of symmetric states, and only ex-
plores one representative state per equivalence class.

Previous work on symmetry pruning in classical plan-
ning has, for the most part, not considered the question how
these symmetries interact with heuristics. An exception is
the work of Domshlak et al. (2013), which shows how in-
formation about symmetries can be used to enrich knowl-
edge about landmarks that need to be achieved from a given
search node.
Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

In this paper, we systematically investigate the interaction
of symmetries and heuristics for classical planning. In our
main contribution, we analyze influential heuristics from the
planning literature to see if they are invariant under symme-
try in the sense that, given two symmetric states, they are
guaranteed to compute the same estimate.

Invariance under symmetry gives us some reassurance
that a heuristic captures global structural aspects of the prob-
lem: (blind) search trees rooted at symmetric states are iso-
morphic, and hence an unbiased heuristic might be expected
to treat them identically. However, the state of the art in
the classical heuristic search literature contains many ex-
amples of estimators that are not invariant under symmetry,
and hence so-called symmetric lookups are often performed
to compute heuristic information not just for the currently
considered search state, but also for other representatives of
its equivalence class (e. g., Culberson and Schaeffer 1998;
Korf and Felner 2002; Felner et al. 2011). Such symmetric
lookups are of course only useful for heuristics which are
not invariant under symmetry.

As a second contribution, we introduce structural sym-
metries for classical planning tasks. Compared to other no-
tions of symmetry suggested in the recent planning litera-
ture (e. g., Pochter, Zohar, and Rosenschein 2011), structural
symmetries are directly defined in terms of straight-forward
invariance properties on the original factored representation
of a planning task. They are hence easier to understand and
easier to reason about than previous notions of symmetry.

Background
We consider planning tasks Π = 〈P,O, I,G,C〉 in the
(propositional) STRIPS formalism extended with operator
costs. In such a task, P is a set of Boolean propositions.
Each subset s ⊆ P is called a state, and S = 2P is the state
space of Π. The state I is the initial state of Π. The goal
G ⊆ P is a set of propositions, where a state s is a goal state
if G ⊆ s. The set O is a finite set of operators. Each opera-
tor o ∈ O has an associated set of preconditions pre(o) ⊆ P ,
add effects add(o) ⊆ P and delete effects del(o) ⊆ P , and
C : O → R0+ is a non-negative operator cost function.

The semantics of STRIPS planning is as follows. An op-
erator o is applicable in the state s if pre(o) ⊆ s. Applying
o in s results in the state sJoK := (s \ del(o)) ∪ add(o).
The transition graph TΠ = 〈S,E〉 of Π is the edge-labeled

digraph over S which contains an edge 〈s, sJoK; o〉 from s
to sJoK labeled with o whenever o ∈ O is applicable in
state s. A sequence of operators π = 〈o1, . . . , ok〉 is ap-
plicable in s if the transition graph contains a path with la-
bel sequence π starting from s0. If it exists, such a path is
uniquely defined, and its end state is denoted by sJπK. An
applicable operator sequence is a plan for s if sJπK is a goal
state. Its cost is the cumulative cost of operators in the se-
quence: C(π) =

∑k
i=1 C(oi). A plan for s with minimal

cost is called optimal. The perfect heuristic for s, denoted
by h∗(s), or h∗(s,Π) if the planning task is not clear from
context, is the cost of an optimal plan for s. The objective of
(optimal) planning is to find an (optimal) plan for I .

Symmetries of the State Transition Graph
A symmetry of a transition graph TΠ = 〈S,E〉 with opera-
tors O is a permutation σ of S ∪ O mapping states to states
and operators to operators such that
– 〈s, s′; o〉 ∈ E iff 〈σ(s), σ(s′);σ(o)〉 ∈ E,
– C(σ(o)) = C(o), and
– s is a goal state iff σ(s) is a goal state
for all states s, s′ and operators o. Symmetries are also
called (goal-stable) automorphisms. They are closed under
composition and inverse, forming the automorphism group
Aut(TΠ) of the transition graph. Each subgroup Γ of symme-
tries induces an equivalence relation∼Γ on states S: s ∼Γ s

′

iff σ(s) = s′ for some σ ∈ Γ. States in the same equiv-
alence class are called symmetric. Computing (a compact
representation of) Aut(G) for a graph G is not known to be
polynomial-time, but backtracking techniques are surpris-
ingly effective in finding substantial subgroups of Aut(G).

For notational convenience, throughout the paper we ex-
tend permutations σ over a carrier set X to sequences over
X (σ(〈x1, . . . , xn〉) := 〈σ(x1), . . . , σ(xn)〉) and subsets of
X (σ({x1, . . . , xn}) := {σ(x1), . . . , σ(xn)}).

The following (immediate) result is the formal basis for
exploiting symmetries for planning:

Theorem 1 Let Π be a planning task, let s be one of its
states, let π be a sequence of operators of Π, and let σ be a
symmetry of TΠ. Then π is a plan for s iff σ(π) is a plan for
σ(s), and the two plans have the same cost.

A direct corollary is that h∗(s) = h∗(σ(s)) for all sym-
metries σ.

Symmetries from Problem Description Graphs
Pruning state spaces by reasoning about symmetries has
been adopted in model checking (e. g., Emerson and Sistla
1996), constraint satisfaction (e. g., Puget 1993), and plan-
ning (e. g., Rintanen 2003; Fox and Long 1999; 2002;
Pochter, Zohar, and Rosenschein 2011; Domshlak, Katz,
and Shleyfman 2012; 2013).

As the state transition graph TΠ of a planning task Π is
usually too large to be given explicitly, symmetries must be
inferred from a compact description. Pochter et al. intro-
duced a method for deducing some symmetries of the plan-
ning task from automorphisms of a certain graphical struc-
ture, the problem description graph (PDG) of Π. Later,

Domshlak et al. (2012) slightly modified the definition,
mainly to add support for general-cost actions. As observed
by Pochter et al., every automorphism of the PDG of Π in-
duces an automorphism of TΠ, and the former can be found
using off-the-shelf tools for discovery of automorphisms in
explicit graphs, such as BLISS (Junttila and Kaski 2007).

Pochter et al. define the PDG for the SAS+ formalism
(Bäckström and Klein 1991). A STRIPS task can be viewed
as a SAS+ task over binary-domain state variables with op-
erator preconditions and the goal restricted to variables as-
signed the value 1. Thus, we present here an adaptation of
the definition by Pochter et al. to STRIPS planning tasks.

Definition 1 Let Π = 〈P,O, I,G,C〉 be a STRIPS planning
task. The problem description graph (PDG) of Π is the col-
ored digraph 〈N,E〉 with nodes

N =
⋃
p∈P
{vp, vT

p , v
F
p} ∪ {vo | o ∈ O},

node colors

col(v) =

1 if v = vT

p , p ∈ G
2 + C(o) if v = vo, o ∈ O
0 otherwise

and edges
E =

⋃
p∈P
{〈vp, vT

p〉, 〈vp, vF
p〉} ∪

⋃
o∈O

(
Epre
o ∪ Eadd

o ∪ Edel
o

)
,

where Epre
o = {〈vT

p , vo〉 | p ∈ pre(o)},
Eadd
o = {〈vo, vT

p〉 | p ∈ add(o)},
Edel
o = {〈vo, vF

p〉 | p ∈ del(o)}.

A PDG symmetry is a symmetry of TΠ that is induced by a
graph automorphism of the PDG of Π. In the following sec-
tion, we introduce a more direct definition for symmetries
of planning tasks based on the factored task representation.
Due to its simplicity, this new definition is easier to reason
about than PDG symmetries.

Structural Symmetries
By a permutation of a planning task, we mean a permutation
of its propositions and operators. Based on this concept, we
can directly give a structural notion of symmetry.

Definition 2 Let Π = 〈P,O, I,G,C〉 be a STRIPS planning
task. A permutation σ of Π is a structural symmetry if
• σ(P) = P
• σ(O) = O, and for all o ∈ O:

– pre(σ(o)) = σ(pre(o))
– add(σ(o)) = σ(add(o))
– del(σ(o)) = σ(del(o))
– C(σ(o)) = C(o)

• σ(G) = G

Intuitively, a structural symmetry preserves (leaves invari-
ant) all aspects of a planning task other than the initial state.
By “renaming” propositions and operators, we end up with
an identical planning task. The following result establishes
that structural symmetries induce transition graph symme-
tries and shows how they are related to PDG symmetries:

Theorem 2 Let Π be a planning task. Then:

1. If σ is a structural symmetry of Π, then σ (viewed as a
function on the states and operators of Π) is a transition
graph symmetry of TΠ.

2. The structural symmetries form a subgroup of Aut(TΠ).
3. Every structural symmetry of Π corresponds to a PDG

symmetry of Π in the sense that they induce the same tran-
sition graph symmetry.

4. If each proposition of Π occurs as an operator precondi-
tion or in the goal, then every PDG symmetry of Π cor-
responds to a structural symmetry of Π in the sense that
they induce the same transition graph symmetry.

For space reasons, we refer to a technical report (Shleyf-
man et al. 2014) for the proof, which is not complicated.
Statements 1. and 2. establish that structural symmetries are
indeed symmetries and induce an equivalence relation. Be-
cause of statements 3. and 4., existing algorithms for detect-
ing PDG symmetries can be used to derive structural sym-
metries, while proving properties of symmetries based on
the much simpler definition of structural symmetry.1

In the following, we analyze how planning heuristics from
the literature based on delete relaxation, critical paths and
landmarks interact with structural symmetries. For a plan-
ning task Π and symmetry σ, we say that a given heuristic
function h is invariant under σ if h(s) = h(σ(s)) for all
states s. We say that a family of heuristic functions is in-
variant under structural symmetry if this invariance property
holds for all structural symmetries of all planning tasks.

Delete Relaxation Heuristics
Delete relaxation has played a major role in recent advances
of planning systems (e. g., Hoffmann and Nebel 2001;
Helmert and Domshlak 2009). In heuristics based on delete
relaxation, heuristic values are computed with respect to a
modified planning task Π+, in which all delete effects of ac-
tions are omitted (e. g., Hoffmann and Nebel 2001). A plan
for the delete relaxation of Π is called a relaxed plan for Π.

The optimal delete relaxation heuristic, denoted by h+,
assigns to each state s the cost of an optimal relaxed plan for
s: h+(s,Π) := h∗(s,Π+). This is an admissible estimate
(lower bound) for h∗(s). Our first result deals with h+.

Theorem 3 The optimal delete relaxation heuristic h+ is
invariant under structural symmetry.

Proof: Let Π be a planning task, s a state of Π and σ a struc-
tural symmetry of Π. Then σ is also a structural symmetry
of Π+: clearly, del(σ(o)) = σ(del(o)) = ∅ for all operators
o of Π+, and in all other aspects, Π and Π+ are identical.

We obtain: h+(s,Π) (*)= h∗(s,Π+) (**)= h∗(σ(s),Π+) (*)=
h+(σ(s)), where (*) holds by definition of h+ and (**)

1The requirement in statement 4. that each proposition occurs
in a precondition or in the goal is not limiting: propositions violat-
ing this requirement can be removed from the planning task with-
out affecting its semantics, and existing commonly used relevance
analysis algorithms (Gazen and Knoblock 1997) already do this.

holds because σ is a structural symmetry of Π+ and h∗ is
invariant under structural symmetry (cf. Theorem 1). �

Most planning algorithms based on delete relaxation do
not use the h+ heuristic directly because its computation
is NP-equivalent (Bylander 1994). Instead, they use var-
ious approximations. We consider three such approxima-
tions here: the hmax and hadd heuristics by Bonet and
Geffner (2001), and the FF heuristic by Hoffmann and
Nebel (2001). There are many equivalent ways of defining
these heuristics. Our presentation broadly follows Keyder
and Geffner (2008), with some differences in details to sim-
plify the proofs and discussion. In this approach, the heuris-
tics are declaratively defined as systems of equations.

For the hmax heuristic for state s of planning task Π =
〈P,O, I,G,C〉, the equations are:

propcost(p, s) = 0 if p ∈ s (1)
propcost(p, s) = opcost(supp(p, s), s) if p /∈ s (2)

supp(p, s) ∈ argmin
o∈O:p∈add(o)

opcost(o, s) if p /∈ s (3)

opcost(o, s) = C(o) + setcost(pre(o), s) (4)
setcost(F, s) = max

p∈F
propcost(p, s) (5)

hmax(s) = setcost(G, s) (6)

Here, propcost(p, s) ∈ R0+ ∪ {∞} estimates the cost of
reaching proposition p ∈ P from state s, setcost(F, s) ∈
R0+ ∪ {∞} estimates the cost of reaching the set of propo-
sitions F ⊆ P from state s, opcost(o, s) ∈ R0+ ∪ {∞}
estimates the cost of reaching a state where o is applicable
and then applying it, and supp(p, s) ∈ O is a best supporter
of proposition p ∈ P , i. e., an operator which is estimated to
offer the cheapest way of achieving p.

If all operator costs are strictly positive, there exists ex-
actly one solution to this set of equations, i. e., exactly one
way to define propcost, opcost, etc. to satisfy the equations,
except that there may be multiple minimizers in (3). How-
ever, this ambiguity does not affect the heuristic value be-
cause all minimizers have the same opcost.2

We can now present our result for hmax.

Theorem 4 The maximum heuristic hmax is invariant under
structural symmetry.

Proof: Let propcost, opcost, setcost and supp be a solution
to the equations defining hmax. Let σ be a structural symme-
try. We define primed versions propcost′, opcost′, setcost′
and supp′ as follows:

propcost′(p, s) := propcost(σ(p), σ(s))

opcost′(o, s) := opcost(σ(o), σ(s))

setcost′(F, s) := setcost(σ(F), σ(s))

supp′(p, s) := σ−1(supp(σ(p), σ(s)))

2To keep the presentation short, we gloss over some details
here: the case of zero-cost actions and the case where the equa-
tions minimize or maximize over empty sets are discussed in the
technical report (Shleyfman et al. 2014).

We will show that propcost′, opcost′ etc. also satisfy
the equations defining hmax. Due to the uniqueness of
the solution (except for supp), this implies that the primed
and unprimed values are identical. Exploiting this for
setcost in particular, we obtain: hmax(s) = setcost(G, s) =
setcost′(G, s) = setcost(σ(G), σ(s)) = setcost(G, σ(s)) =
hmax(σ(s)) where we apply, in sequence: the definition of
hmax, the equality of setcost and setcost′, the definition of
setcost′, the fact G = σ(G), and the definition of hmax.

It remains to show that propcost′, opcost′ etc. satisfy
Equations (1–5):
(1) If p ∈ s, then σ(p) ∈ σ(s), and hence propcost′(p, s) =

propcost(σ(p), σ(s)) = 0
(2) If p /∈ s, then σ(p) /∈ σ(s), and hence:

propcost′(p, s)
= propcost(σ(p), σ(s))
= opcost(supp(σ(p), σ(s)), σ(s))
= opcost(σ(σ−1(supp(σ(p), σ(s)), σ(s))))
= opcost(σ(supp′(p, s)), σ(s))
= opcost′(supp′(p, s), s)

(3) For p /∈ s, we have σ(p) /∈ σ(s) and obtain:
σ(supp′(p, s))
= σ(σ−1(supp(σ(p), σ(s))))
= supp(σ(p), σ(s))
∈ argmino′∈O:σ(p)∈add(o′) opcost(o′, σ(s))
= argmino′∈O:o′=σ(o),σ(p)∈add(σ(o)) opcost(σ(o), σ(s))
= argmino′∈O:o′=σ(o),p∈add(o) opcost′(o, s)
= σ(argmino∈O:p∈add(o) opcost′(o, s)) and hence
supp′(p, s) ∈ argmino∈O:p∈add(o) opcost′(o, s)

(4) opcost′(o, s)
= opcost(σ(o), σ(s))
= C(σ(o)) + setcost(pre(σ(o)), σ(s))
= C(o) + setcost(σ(pre(o)), σ(s))
= C(o) + setcost′(pre(o), s)

(5) setcost′(F, s)
= setcost(σ(F), σ(s))
= maxp′∈σ(F) propcost(p′, σ(s))
= maxσ(p)∈σ(F) propcost(σ(p), σ(s))
= maxp∈F propcost′(p, s)

�

A corresponding result for hadd is now easy to obtain.

Theorem 5 The additive heuristic hadd is invariant under
structural symmetry.

Proof: The definition of hadd is identical to hmax except
that (5) is replaced by setcost(F, s) =

∑
p∈F propcost(p, s).

The preceding proof works with the adaptation of replacing
the maximum by a sum in the part dealing with (5). �

More generally, a corresponding result holds for all vari-
ations of hmax and hadd which are obtained by changing the
definition of set costs (i. e., using an aggregation function
other than maximum or sum). The proof only relies on the
fact that the heuristic is well-defined (the equations have
a unique solution) and that setcost(F, s) can be defined in
terms of the multi-set of fact costs {propcost(p, s) | p ∈ F}.

Another famous approximation of h+ is the FF heuris-
tic (Hoffmann and Nebel 2001). Like hmax and hadd, it can
be defined in terms of best supporters of propositions. Dif-
ferent variants of the FF heuristic exist. The variants most
commonly used for cost-based planning are called FF/hmax

and FF/hadd and compute best supporters in the same way as
hmax and hadd, respectively (Keyder and Geffner 2008). We
focus on the FF/hmax variant in the following, but identical
results can be proved for FF/hadd. FF/hmax uses Equations
(1–5) of the definition of hmax and adds the following ones:

plan(p, s) = ∅ if p ∈ s (7)

plan(p, s) = {supp(p, s)} ∪
⋃

q∈pre(supp(p,s))

plan(q, s) if p /∈ s (8)

hFF(s) =
∑

o∈
S

q∈G plan(q,s)

C(o) (9)

The basic idea is to associate with each proposition p a
set of operators plan(p, s) which is sufficient to achieve p in
Π+ from state s. Operator sets for sets of propositions are
then aggregated by set union, and the overall heuristic value
is the total cost of all operators in the operator set associated
with the goal.

Unlike hmax and hadd, however, the FF heuristic is not
well-defined: different ways of choosing between minimiz-
ers in the equation for supp(p, s) can lead to different heuris-
tic values. For this reason, if we make no further assumption
on the tie-breaking policy used, the FF heuristic is not neces-
sarily invariant under structural symmetry. However, this is
not unexpected for a heuristic that is not well-defined. One
natural tie-breaking policy is to pick uniformly randomly be-
tween multiple minimizers in (3). This turns plan(p, s) and
hFF(s) into well-defined random variables.3 We can then
prove the following result:

Theorem 6 1. There exist tie-breaking policies for which
FF/hmax is not invariant under structural symmetry.

2. There exist tie-breaking policies for which FF/hadd is not
invariant under structural symmetry.

3. Let hFF be a randomized variant of the FF heuristic
where supporters are selected w.r.t. a heuristic that is
invariant under structural symmetry (like hmax or hadd)
and ties are broken uniformly randomly. This heuristic
is invariant under structural symmetry in the sense that
for all states s and structural symmetries σ, hFF(s) and
hFF(σ(s)) are identically distributed random variables.

Proof sketch: The first two results can be shown by provid-
ing an example, for which we refer to the technical report
(Shleyfman et al. 2014).

The proof for the third result works on similar principles
as the one for Theorem 4. The key step is to show that
the random variable plan′(p, s) := σ−1(plan(σ(p), σ(s)))
is identically distributed to plan(p, s). Again we refer to the
technical report for details. �

3Note that plan(p, s) and plan(q, s) for p 6= q are often not
independent.

Critical Path Heuristics
The critical path heuristics hm (Haslum and Geffner 2000)
generalize the hmax heuristic. They are parameterized with
a natural number m ≥ 1, and for m = 1 we obtain h1 =
hmax. For m > 1, hm is no longer bounded by h+, and
for sufficiently large m we have hm = h∗. However, the
computational complexity of hm is exponential in m, and
thus in practice m is severely restricted (usually to m = 2).

An alternative view of hm was suggested by Haslum
(2009), stating that hm can be computed as the hmax heuris-
tic of a transformed problem, called Πm. For convenience,
we repeat Haslum’s definition (adapted to our notation).

Definition 3 (Haslum, 2009) Let Π = 〈P,O, I,G,C〉 be a
propositional STRIPS task and let m ≥ 1. The STRIPS task
Πm = 〈Pm, Om, Im, Gm, Cm〉 is defined as follows. For
any set X ⊆ P , let Sm(X) = {c ⊆ X | |c| ≤m} denote all
sets of at most m elements of X . Then Pm contains a meta-
atom πc for each c∈ Sm(P). For each operator o∈O and
for each set f⊆P with |f |≤m−1 such that f is disjoint from
add(o)∪del(o), Om contains a meta-operator αo,f with:

pre(αo,f) = {πc | c ∈ Sm(pre(o) ∪ f)}
add(αo,f) = {πc | c ∈ Sm(add(o) ∪ f)}
del(αo,f) = ∅
Cm(αo,f) = C(o)

The initial state is Im = {πc | c ∈ Sm(I)}, and the goal is
Gm = {πc | c ∈ Sm(G)}.

Our definition differs from Haslum’s in including more
add effects in the meta-operators: Haslum additionally re-
quires c∩add(o) 6= ∅. By removing this condition, our meta-
operators include additional effects that are already precon-
ditions, which clearly does not affect their semantics.

Given a structural symmetry σ of Π, we define a mapping
σm on the propositions and operators of Πm as follows. For
each meta-atom πc, we set σm(πc) = πσ(c). For each meta-
operator αo,f , we set σm(αo,f) = ασ(o),σ(f). We now show
that this mapping is a structural symmetry of Πm.

Theorem 7 Let Π = 〈P,O, I,G,C〉 be a STRIPS planning
task and σ be a structural symmetry of Π. Then σm is a
structural symmetry of Πm = 〈Pm, Om, Im, Gm, Cm〉.

Proof: For simplicity, we identify meta-atoms πc with their
proposition sets c in the following. It is easy to verify
σm(Sm(X)) = Sm(σ(X)) for all X ⊆ P . From this we
immediately obtain σm(Pm) = Pm and σm(Gm) = Gm.

We next show σm(Om) = Om. Here, we mainly need to
verify σm(αo,f) ∈ Om for all αo,f ∈ Om. Then σm clearly
defines a bijection onOm: it is easy to see that it is injective,
and hence by a counting argument it must also be bijective.

Consider αo,f ∈Om. By definition ofOm, we have o ∈ O
and f ⊆ P with |f | ≤ m−1 and f is disjoint from add(o)∪
del(o). Then clearly σ(o) ∈ O, and σ(f) is disjoint from
add(σ(o))∪del(σ(o)) because σ is a structural symmetry of
Π. Hence σm(αo,f) = ασ(o),σ(f) ∈ Om as desired.

It remains to show that σm preserves the structure of

meta-operators. For meta-operator αo,f , we have

pre(σm(αo,f)) = {πc | c ∈ Sm(pre(σ(o)) ∪ σ(f))}
= {σm(πc) | c ∈ Sm(pre(o) ∪ f)}
= σm(pre(αo,f))

add(σm(αo,f)) = {πc | c ∈ Sm(add(σ(o)) ∪ σ(f))}
= {σm(πc) | c ∈ Sm(add(o) ∪ f)}
= σm(add(αo,f))

del(σm(αo,f)) = ∅ = σm(del(αo,f))
C(σm(αo,f)) = C(ασ(o),σ(f))

= C(σ(o)) = C(o) = C(αo,f)

�We can now prove the invariance of hm.

Theorem 8 The heuristic hm is invariant under structural
symmetry.
Proof: Applying Theorems 4 and 7, we get

hm(s,Π) = hmax(Sm(s),Πm)
= hmax(σm(Sm(s)),Πm)
= hmax(Sm(σ(s)),Πm)
= hm(σ(s),Π),

where the relationship between hm in Π and hmax in Πm is
due to Theorem 5 of Haslum (2009). �

Landmark Heuristics
Landmarks were original introduced by Porteous, Sebastia,
and Hoffmann (2001) and later revisited by the same au-
thors (Hoffmann, Porteous, and Sebastia 2004). Richter,
Helmert, and Westphal (2008) first suggested their use for
search heuristics, and since then many heuristics based on
landmarks have been suggested (e. g., Karpas and Domsh-
lak 2009; Helmert and Domshlak 2009; Keyder, Richter, and
Helmert 2010; Bonet and Helmert 2010).

Definition 4 Let Π = 〈P,O, I,G,C〉 be a STRIPS task. A
set of operators L ⊆ O is a disjunctive action landmark
(landmark for short) for state s if every plan π for s includes
an operator in L.

The originally suggested landmark heuristics (Richter,
Helmert, and Westphal 2008; Karpas and Domshlak 2009)
are path-dependent, i. e., their heuristic estimates depend not
just on the state s to be evaluated, but also on the path(s)
from the initial state to s explored by the search algorithm.
Domshlak et al. (2013) already discuss the relationship of
symmetries and path-dependent landmark heuristics, so we
focus on other aspects of landmark heuristics here, begin-
ning with the following basic result.

Theorem 9 Let Π be a planning task and σ be a transition
graph symmetry of Π. Let s be a state of Π and L be a
landmark for s. Then σ(L) is a landmark for σ(s).
Proof: Follows immediately from the definition of land-
marks and Theorem 1. �

Note that this result applies to general transition graph
symmetries, not just to structural symmetries. It is easy

to see that an analog of the theorem holds for action land-
marks (landmarks L with |L| = 1) and also for the case
of structural symmetries and (disjunctive or non-disjunctive)
fact landmarks (landmarks L consisting of all achievers of
a given set of propositions). The latter result was already
shown by Domshlak et al. (2013).

For practical use, however, it is not just important that a
given set of operators is a landmark. It is also necessary that
a planning algorithm can generate the landmark in order to
exploit it for heuristic information. A landmark generation
method L is an algorithm that, given a state s, computes
a set of landmarks L(s) for s. Such algorithms are gener-
ally sound (produce only landmarks), but not complete (do
not produce all landmarks). We say that a landmark genera-
tion method is invariant under structural symmetry if, for all
structural symmetries σ, it guarantees L(σ(s)) = σ(L(s)).

Current planning algorithms from the literature typically
use one of the following landmark generation methods: ZG
(Zhu and Givan 2003), RHW (Richter, Helmert, and West-
phal 2008), KRH (Keyder, Richter, and Helmert 2010),
or some variation of justification graph landmarks (e. g.,
Helmert and Domshlak 2009; Bonet and Helmert 2010;
Bonet and Castillo 2011). For space reasons, the algorithms
are not described in detail, but our previous discussion is
already sufficient to sketch the proof of the following result.

Theorem 10 The ZG, KRH and complete justification
graph landmark generation methods are invariant under
structural symmetry.
Proof sketch: Like hm, KRH is parameterized by a natural
number m ≥ 1. It generates all causal fact landmarks of the
Πm planning task discussed in the section on critical-path
heuristics, and the result follows from Theorems 7 and 9.
(It is not difficult to see that Theorem 9 remains true when
restricting attention to causal fact landmarks under structural
symmetries.)

ZG is the special case of KRH with m = 1.
Justification graph landmarks are closely related to dis-

junctive action landmarks of the delete-relaxed task Π+

(Bonet and Helmert 2010), and hence invariance for the (in-
tractable) method that generates all such landmarks follows
from Theorem 9 and the proof of Theorem 3. �

We remark that an analogous result does not hold for
RHW landmarks, which partially depend on the first-order
PDDL representation of planning tasks, which is not pre-
served by our structural symmetries defined on propositional
STRIPS tasks.

Besides the landmark generation method, the other impor-
tant aspect of a landmark-based heuristic is how the informa-
tion from different landmarks is combined to form a heuris-
tic estimate. Here, it is easy to see that the prevalent methods
from the literature are invariant under structural symmetry.

Theorem 11 LetL be a landmark generation method that is
invariant under structural symmetry, and let h be a heuristic
such that h(s) derives a heuristic estimate from L(s) using
one of the following techniques:
1. counting landmarks (Richter and Westphal 2010)

2. summing the minimal operator costs of each landmark
(Richter, Helmert, and Westphal 2008)

3. optimal cost partitioning (Karpas and Domshlak 2009)
4. uniform cost partitioning with or without special treat-

ment of action landmarks (Karpas and Domshlak 2009)
5. hitting sets (Bonet and Helmert 2010)
Then h is invariant under structural symmetry.

Proof sketch: The result for 1. follows immediately from
the previous theorem, from which 2. is also immediate if
we consider that C(σ(o)) = C(o). Heuristics 3. and 5. are
based on solutions to LPs/IPs which are easily seen to be
isomorphic for s and σ(s). For 4., we refer to the technical
report (Shleyfman et al. 2014). �

We close with a final result concerning the landmark-cut
heuristic hLM-cut (Helmert and Domshlak 2009). Like the FF
heuristic, hLM-cut is affected by arbitrary tie-breaking, which
can lead to symmetric states having different heuristic val-
ues. However, when breaking ties uniformly randomly, we
can prove the same randomized result as for hFF.

Theorem 12 There exist tie-breaking policies for which
hLM-cut is not invariant under structural symmetry.

LM-cut with uniformly random tie-breaking is invariant
under structural symmetry in the sense that for all states s
and structural symmetries σ, hLM-cut(s) and hLM-cut(σ(s))
are identically distributed random variables.

Proof sketch: The key steps in the proof are the invariance
of hmax (Theorem 4), showing that the (randomized) justifi-
cation graphs computed by LM-cut for s and σ(s) are iso-
morphic, from which it follows that the probability of com-
puting cut L in state s equals the probability of computing
cut σ(L) in state σ(s). With C(o) = C(σ(o)), we can then
show that the heuristic values in each iteration of the LM-cut
loop (probabilistically) increase in the same way and the re-
sulting modified planning tasks for the next LM-cut iteration
are isomorphic. �

Conclusions
We defined a notion of structural symmetry, which allows di-
rectly reasoning about symmetries of a planning task based
on its compact representation. We also performed an exten-
sive study of the symmetry properties of existing heuristic
functions. Many of the studied heuristics were found to be
invariant under structural symmetries, which is encouraging
in the sense that it shows that these heuristics do not miss any
“obvious” information that could be obtained by reasoning
about structural symmetries.

Of the major classes of planning heuristics, our study ex-
cluded heuristics based on abstraction. These play a major
role in cost-optimal classical planning and deserve a sepa-
rate investigation, which is a subject of future work.

Acknowledgments
This work was supported by the Israel Science Founda-
tion (ISF) grant 1045/12 and by the Swiss National Science
Foundation (SNSF) as part of the project “Safe Pruning in
Optimal State Space Search” (SPOSSS).

References
Bäckström, C., and Klein, I. 1991. Planning in polyno-
mial time: the SAS-PUBS class. Computational Intelligence
7(3):181–197.
Bonet, B., and Castillo, J. 2011. A complete algorithm for
generating landmarks. In Proc. ICAPS 2011, 315–318.
Bonet, B., and Geffner, H. 2001. Planning as heuristic
search. AIJ 129(1):5–33.
Bonet, B., and Helmert, M. 2010. Strengthening landmark
heuristics via hitting sets. In Proc. ECAI 2010, 329–334.
Bylander, T. 1994. The computational complexity of propo-
sitional STRIPS planning. AIJ 69(1–2):165–204.
Culberson, J. C., and Schaeffer, J. 1998. Pattern databases.
Computational Intelligence 14(3):318–334.
Domshlak, C.; Katz, M.; and Shleyfman, A. 2012. En-
hanced symmetry breaking in cost-optimal planning as for-
ward search. In Proc. ICAPS 2012.
Domshlak, C.; Katz, M.; and Shleyfman, A. 2013. Symme-
try breaking: Satisficing planning and landmark heuristics.
In Proc. ICAPS 2013, 298–302.
Edelkamp, S. 2001. Planning with pattern databases. In
Proc. ECP 2001, 84–90.
Emerson, E. A., and Sistla, A. P. 1996. Symmetry and model
checking. Formal Methods in System Design 9(1–2):105–
131.
Felner, A.; Zahavi, U.; Holte, R.; Schaeffer, J.; Sturtevant,
N.; and Zhang, Z. 2011. Inconsistent heuristics in theory
and practice. AIJ 175:1570–1603.
Fox, M., and Long, D. 1999. The detection and exploitation
of symmetry in planning problems. In Proc. IJCAI 1999,
956–961.
Fox, M., and Long, D. 2002. Extending the exploitation of
symmetries in planning. In Proc. AIPS 2002, 83–91.
Gazen, B. C., and Knoblock, C. A. 1997. Combining the
expressivity of UCPOP with the efficiency of Graphplan. In
Proc. ECP 1997, 221–233.
Gerevini, A., and Serina, I. 2002. LPG: A planner based on
local search for planning graphs with action costs. In Proc.
AIPS 2002, 13–22.
Haslum, P., and Geffner, H. 2000. Admissible heuristics for
optimal planning. In Proc. AIPS 2000, 140–149.
Haslum, P. 2009. hm(P) = h1(Pm): Alternative charac-
terisations of the generalisation from hmax to hm. In Proc.
ICAPS 2009, 354–357.
Helmert, M., and Domshlak, C. 2009. Landmarks, critical
paths and abstractions: What’s the difference anyway? In
Proc. ICAPS 2009, 162–169.
Helmert, M.; Haslum, P.; Hoffmann, J.; and Nissim, R.
2014. Merge-and-shrink abstraction: A method for generat-
ing lower bounds in factored state spaces. JACM 61(3):16:1–
63.
Helmert, M. 2006. The Fast Downward planning system.
JAIR 26:191–246.

Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. JAIR 14:253–
302.
Hoffmann, J.; Porteous, J.; and Sebastia, L. 2004. Ordered
landmarks in planning. JAIR 22:215–278.
Junttila, T., and Kaski, P. 2007. Engineering an efficient
canonical labeling tool for large and sparse graphs. In Pro-
ceedings of the Ninth Workshop on Algorithm Engineering
and Experiments (ALENEX 2007), 135–149. SIAM.
Karpas, E., and Domshlak, C. 2009. Cost-optimal planning
with landmarks. In Proc. IJCAI 2009, 1728–1733.
Katz, M., and Domshlak, C. 2010. Implicit abstraction
heuristics. JAIR 39:51–126.
Katz, M.; Hoffmann, J.; and Domshlak, C. 2013. Who said
we need to relax all variables? In Proc. ICAPS 2013, 126–
134.
Keyder, E., and Geffner, H. 2008. Heuristics for planning
with action costs revisited. In Proc. ECAI 2008, 588–592.
Keyder, E.; Richter, S.; and Helmert, M. 2010. Sound and
complete landmarks for and/or graphs. In Proc. ECAI 2010,
335–340.
Korf, R. E., and Felner, A. 2002. Disjoint pattern database
heuristics. AIJ 134(1–2):9–22.
Pochter, N.; Zohar, A.; and Rosenschein, J. S. 2011. Ex-
ploiting problem symmetries in state-based planners. In
Proc. AAAI 2011, 1004–1009.
Porteous, J.; Sebastia, L.; and Hoffmann, J. 2001. On the
extraction, ordering, and usage of landmarks in planning. In
Proc. ECP 2001, 174–182.
Puget, J.-F. 1993. On the satisfiability of symmetrical con-
strained satisfaction problems. In Proceedings of the 7th
International Symposium on Methodologies for Intelligent
Systems (ISMIS 1993), 350–361.
Richter, S., and Westphal, M. 2010. The LAMA planner:
Guiding cost-based anytime planning with landmarks. JAIR
39:127–177.
Richter, S.; Helmert, M.; and Westphal, M. 2008. Land-
marks revisited. In Proc. AAAI 2008, 975–982.
Rintanen, J. 2003. Symmetry reduction for SAT representa-
tions of transition systems. In Proc. ICAPS 2003, 32–40.
Shleyfman, A.; Katz, M.; Helmert, M.; Sievers, S.; and
Wehrle, M. 2014. Heuristics and symmetries in classical
planning: Additional proofs. Technical Report CS-2014-
006, Universität Basel, Departement Mathematik und Infor-
matik.
Zhu, L., and Givan, R. 2003. Landmark extraction via plan-
ning graph propagation. In ICAPS 2003 Doctoral Consor-
tium, 156–160.

