
Introduction

Contributions

Follow-Up

Summary

Implicit Abstraction Heuristics for
Cost-Optimal Planning

Michael Katz
Advisor: Carmel Domshlak

Technion - Israel Institute of Technology

Introduction

Heuristics

Contributions

Follow-Up

Summary

Planning Language

Classical Planning in SAS+

Planning task is 5-tuple 〈V,A, C, s0, G〉:
V : finite set of finite-domain state variables

A: finite set of actions of form 〈pre, eff〉
A: (preconditions/effects; partial variable assignments)

C : A 7→ R0+ captures action cost

s0: initial state (variable assignment)

G: goal description (partial variable assignment)

Introduction

Heuristics

Contributions

Follow-Up

Summary

How to Solve

Cost-Optimal Planning

Given: planning task Π = 〈V,A, C, s0, G〉
Find: operator sequence a1 . . . an ∈ A∗

transforming s0 into some state sn ⊇ G,
while minimizing

∑n
i=1 C(ai)

Approach: A∗ + admissible heuristic h : S 7→ R0+

Admissible ≡ underestimate goal distance

Introduction

Heuristics

Contributions

Follow-Up

Summary

Abstractions

Abstraction

Abstraction is a pair of state space S′ and mapping α : S 7→ S′

such that the goal distance is not increased

Introduction

Heuristics

Contributions

Follow-Up

Summary

Abstractions

Abstraction

Abstraction is a pair of state space S′ and mapping α : S 7→ S′

such that the goal distance is not increased

Abstraction heuristic

Heuristic estimate is goal distance in abstracted state space S′

Introduction

Heuristics

Contributions

Follow-Up

Summary

Abstractions

Abstraction

Abstraction is a pair of state space S′ and mapping α : S 7→ S′

such that the goal distance is not increased

Abstraction heuristic

Heuristic estimate is goal distance in abstracted state space S′

Well-known: explicit abstraction heuristics
Examples: projection (pattern database) heuristics

Merge and Shrink heuristics
Problem: abstract spaces are searched exhaustively

; predefined constant bound on abstract space size

Introduction

Contributions

Complexity

Implicit
Abstractions

Heuristics
Composition

Follow-Up

Summary

Contributions

1 Discovering new islands of tractability for
both satisficing and cost-optimal planning.

2 Implicit abstraction heuristics for cost-optimal
planning.

3 Optimal composition of abstraction
heuristics.

Introduction

Contributions

Complexity

Implicit
Abstractions

Heuristics
Composition

Follow-Up

Summary

Contributions

1 Discovering new islands of tractability for
both satisficing and cost-optimal planning.

2 Implicit abstraction heuristics for cost-optimal
planning.

3 Optimal composition of abstraction
heuristics.

Introduction

Contributions

Complexity

Implicit
Abstractions

Heuristics
Composition

Follow-Up

Summary

Planning is Hard!

Bad News

planning is intractable in general (Chapman, 1987)

even the “simple” classical planning with propositional
state variables is PSPACE-complete (Bylander, 1994)

Worse News

no difference in the theoretical complexity of satisficing
and cost-optimal planning in the general case (Bylander,
1994)

for a given domain cost-optimal planning is usually harder
(Helmert, 2003)

Introduction

Contributions

Complexity

Implicit
Abstractions

Heuristics
Composition

Follow-Up

Summary

Satisficing Planning Complexity – ub

S

Sb S
b

S
b
b

P

Pb

P
b
b

P
b

T I

(Brafman and
Domshlak, 2003)

(Brafman and
Domshlak, 2003)

(Jonsson and
Gimenez, 2007)

subscript/superscript b refers to constant bound on
in-degree/out-degree

S - Single connected
P - Polytree
T - Tree
I - Inverted Tree

Introduction

Contributions

Complexity

Implicit
Abstractions

Heuristics
Composition

Follow-Up

Summary

Planning Complexity - Detailed Results for ub
ICAPS 2007, JAIR 2008

Cost-Optimal

k = 1 k = 2 k = 3 k > 3 k = Θ(n)

Pb — — — — P

P(k) P NPC

Sb
b NPC — — — NPC

Satisficing

k = 1 k = 2 k = 3 k > 3 k = Θ(n)
Pb — — — — P

P(k) P P P NPC

Sb
b NPC — — NPC

k refers to k-dependence

Introduction

Contributions

Complexity

Implicit
Abstractions

Heuristics
Composition

Follow-Up

Summary

Relaxing Domain Bounds
Tractable Cases of Planning with Forks, ICAPS 2008a

Theorem (forks)

Cost-optimal planning for fork problems with
root r ∈ V is poly-time if

(i) |dom(r)| = 2, or

(ii) for all v ∈ V , we have |dom(v)| = O(1)

Theorem (inverted forks)

Cost-optimal planning for inverted fork
problems with sink r ∈ V is poly-time
if |dom(r)| = O(1)

Introduction

Contributions

Complexity

Implicit
Abstractions

Heuristics
Composition

Follow-Up

Summary

Contributions

1 Discovering new islands of tractability for
both satisficing and cost-optimal planning.

2 Implicit abstraction heuristics for cost-optimal
planning.

3 Optimal composition of abstraction
heuristics.

Introduction

Contributions

Complexity

Implicit
Abstractions

Heuristics
Composition

Follow-Up

Summary

Implicit Abstraction Heuristics: Basic Idea

Objective

Instead of perfectly reflecting a few state variables,
reflect many (up to Θ(|V |)) state variables, BUT

♠ guarantee abstract space can be searched (implicitly)
in poly-time

Introduction

Contributions

Complexity

Implicit
Abstractions

Heuristics
Composition

Follow-Up

Summary

Implicit Abstraction Heuristics: Basic Idea

Objective

Instead of perfectly reflecting a few state variables,
reflect many (up to Θ(|V |)) state variables, BUT

♠ guarantee abstract space can be searched (implicitly)
in poly-time

How

Abstracting Π by an instance of a tractable fragment of
cost-optimal planning

Introduction

Contributions

Complexity

Implicit
Abstractions

Heuristics
Composition

Follow-Up

Summary

Contribution
ICAPS 2008a, ICAPS 2009, JAIR 2010

1 acyclic causal-graph decompositions – a general framework
for additive implicit abstractions that is based on
decomposing the task at hand along its causal graph

2 fork decompositions – a concrete family of additive
implicit abstractions, that are based on two novel
fragments of tractable cost-optimal planning

3 databased implicit abstractions – a proper partitioning of
the heuristic computation into parts that can be shared
between search states and parts that must be computed
online per state

Introduction

Contributions

Complexity

Implicit
Abstractions

Heuristics
Composition

Follow-Up

Summary

Databased Implicit Abstractions vs. state-of-the-art

domain hF hI hFI MS-104 MS-105 HSP∗F Gamer blind hmax

IPC1-5 368 337 350 332 285 277 315 296 318

domain hF hI hFI HSP∗F Gamer blind
IPC6 134 124 126 108 130 117

Introduction

Contributions

Complexity

Implicit
Abstractions

Heuristics
Composition

Follow-Up

Summary

Contributions

1 Discovering new islands of tractability for
both satisficing and cost-optimal planning.

2 Implicit abstraction heuristics for cost-optimal
planning.

3 Optimal composition of abstraction
heuristics.

Introduction

Contributions

Complexity

Implicit
Abstractions

Heuristics
Composition

Follow-Up

Summary

Heuristics Composition

Given: a planning problem and a set of admissible heuristics

Find: an admissible heuristic that exploits the heuristics
in the set

Solution 1

heuristic that returns maximum over the heuristics in the set

Introduction

Contributions

Complexity

Implicit
Abstractions

Heuristics
Composition

Follow-Up

Summary

Heuristics Composition

Given: a planning problem and a set of admissible heuristics

Find: an admissible heuristic that exploits the heuristics
in the set

Solution 1

heuristic that returns maximum over the heuristics in the set

Solution 2

heuristic that returns sum of the heuristics in the set
♠ in special cases admissible

Introduction

Contributions

Complexity

Implicit
Abstractions

Heuristics
Composition

Follow-Up

Summary

Admissible Cases

All-in-one/nothing-in-rest

Account for the whole cost of each action in computing a
single heuristic in the set, while ignoring the cost of that action
in computing all the other heuristics in the set.

Exploited in Multiple Heuristics

additive pattern database (PDB) heuristics

constrained PDB heuristics

m-reachability heuristics

Introduction

Contributions

Complexity

Implicit
Abstractions

Heuristics
Composition

Follow-Up

Summary

Action-Cost Partitioning – Basic Idea
ICAPS 2008b, AIJ 2010

Action-Cost Partitioning

For each planning task’s action a, if it can possibly be counted
by more than one heuristic in the ensemble, then one should
ensure that the cumulative counting of the cost of a does not
exceed its true cost in the original task.

Π/V

Π1/V1 Π2/V2 Π3/V3

V1, V2, V3 ⊂ V

Each a ∈ A satisfies C(a) ≥
∑m

i=1 Ci(a[Vi])

Introduction

Contributions

Complexity

Implicit
Abstractions

Heuristics
Composition

Follow-Up

Summary

Optimizing Action-Cost Partitioning

Pitfalls

/ infinite space of choices

/ decision process should be fully unsupervised

/ decision process should be state-dependent

; “determining which abstractions [action-cost partitions] will

produce additives that are better than max over standards is

still a big research issue.” (Yang et al., JAIR, 2008)

Introduction

Contributions

Complexity

Implicit
Abstractions

Heuristics
Composition

Follow-Up

Summary

Abstraction Heuristics – Solution

Procedure:

Given: (i) a planning task Π,
(ii) a state s, and
(iii) a set of admissible heuristics

Find: an optimal action-cost partition for s

The procedure is fully unsupervised

The procedure is based on a linear programming
formulation of that optimization problem.

Works for all known to us explicit and implicit
abstractions.

Introduction

Contributions

Complexity

Implicit
Abstractions

Heuristics
Composition

Follow-Up

Summary

Optimal vs. Uniform

Forks IForks Both

Introduction

Contributions

Complexity

Implicit
Abstractions

Heuristics
Composition

Follow-Up

Summary

Optimal vs. Uniform

Forks IForks Both

, Average decrease
in expanded nodes

9.55 186.62 43.98

Introduction

Contributions

Complexity

Implicit
Abstractions

Heuristics
Composition

Follow-Up

Summary

Optimal vs. Uniform

Forks IForks Both

, Average decrease
in expanded nodes

9.55 186.62 43.98

/ Average increase
in evaluation time

319.34 71.54 354.53

Introduction

Contributions

Complexity

Implicit
Abstractions

Heuristics
Composition

Follow-Up

Summary

Optimal vs. Uniform

Forks IForks Both

, Average decrease
in expanded nodes

9.55 186.62 43.98

/ Average increase
in evaluation time

319.34 71.54 354.53

, Computing optimal cost partitioning for initial state only
improves overall performance

Introduction

Contributions

Complexity

Implicit
Abstractions

Heuristics
Composition

Follow-Up

Summary

Optimal for Initial State vs. Uniform action-cost
partitions

domain (D)
hF hI hFI

OI U OI U OI U
airport-ipc4 22 22 22 20 21 21
blocks-ipc2 21 21 21 18 21 18
depots-ipc3 7 7 7 4 7 7
driverlog-ipc3 12 12 13 12 12 12
freecell-ipc3 5 5 4 4 5 4
grid-ipc1 2 2 2 1 1 1
logistics-ipc2 24 22 21 16 21 16
logistics-ipc1 6 6 5 4 5 5
miconic-strips-ipc2 53 51 53 50 53 50
mprime-ipc1 23 23 23 22 21 21
pipes-notank-ipc4 17 17 18 15 16 16
pipes-tank-ipc4 11 11 11 9 9 9
rovers-ipc5 7 6 7 7 7 6
satellite-ipc4 6 6 7 6 7 6
schedule-strips 49 46 49 40 47 46
zenotravel-ipc3 13 11 11 11 13 11

Total IPC1-5 378 368 371 337 367 350

Introduction

Contributions

Follow-Up

Summary

Follow-Up

Enriching heuristics with landmark information
(Domshlak, K, & Lefler, ICAPS 2010)

Controlling cost partitioning
(Karpas, K, & Markovitch, ICAPS 2011)

Satisficing search with admissible heuristics
(Bahumi, Domshlak, & K, HDIP 2011)

Introduction

Contributions

Follow-Up

Summary

Summary

New results on complexity of planning

Formal and empirical results on abstraction-based
admissible heuristics

from small projections to implicit abstractions
optimal combination of multiple abstractions

Future work:

more tractability results for (cost-optimal) planning

solving LPs efficiently

optimization of abstraction selection

optimization of variable-domains abstraction

approximation-oriented implicit abstractions

. . .

	Introduction
	Heuristics

	Contributions
	Complexity
	Implicit Abstractions
	Heuristics Composition

	Follow-Up
	Summary

