Implicit Abstraction Heuristics for Cost-Optimal Planning

Michael Katz <u>Advisor:</u> Carmel Domshlak

Technion - Israel Institute of Technology

Introduction Contribution Follow-Up Summary

Classical Planning in SAS⁺

Planning task is 5-tuple $\langle V, A, C, s^0, G \rangle$:

- V: finite set of finite-domain state variables
- A: finite set of actions of form (pre, eff) (preconditions/effects; partial variable assignments)
- $\mathcal{C}: A \mapsto \mathbb{R}^{0+}$ captures action cost
- s^0 : initial state (variable assignment)
- G: goal description (partial variable assignment)

Introduction Heuristics Contributions Follow-Up Summary

How to Solve

Cost-Optimal Planning

 $\begin{array}{ll} \mbox{Given:} & \mbox{planning task } \Pi = \langle V, A, \mathcal{C}, s^0, G \rangle \\ \mbox{Find:} & \mbox{operator sequence } a_1 \dots a_n \in A^* \\ & \mbox{transforming } s^0 \mbox{ into some state } s_n \supseteq G, \\ & \mbox{while minimizing } \sum_{i=1}^n \mathcal{C}(a_i) \end{array}$

Approach: A^* + admissible heuristic $h: S \mapsto \mathbb{R}^{0+}$

Admissible \equiv underestimate goal distance

Introduction Heuristics Contribution Follow-Up Summary

Abstractions

Abstraction

Abstraction is a pair of state space S' and mapping $\alpha:S\mapsto S'$ such that the goal distance is not increased

Introduction Heuristics Contributions Follow-Up Summary

Abstractions

Abstraction

Abstraction is a pair of state space S' and mapping $\alpha:S\mapsto S'$ such that the goal distance is not increased

Abstraction heuristic

Heuristic estimate is goal distance in abstracted state space S'

Introduction Heuristics Contribution: Follow-Up Summary

Abstractions

Abstraction

Abstraction is a pair of state space S' and mapping $\alpha:S\mapsto S'$ such that the goal distance is not increased

Abstraction heuristic

Heuristic estimate is goal distance in abstracted state space S^\prime

Well-known:	explicit abstraction heuristics
Examples:	projection (pattern database) heuristics
	Merge and Shrink heuristics
Problem:	abstract spaces are searched exhaustively
	ightarrow predefined constant bound on abstract space size

Introduction Heuristics Contributions Follow-Up Summary

Contributions

- Discovering new islands of tractability for both satisficing and cost-optimal planning.
- Implicit abstraction heuristics for cost-optimal planning.
- Optimal composition of abstraction heuristics.

Introduction

Contributions

Complexity Implicit Abstractions Heuristics Composition

Follow-Up

Contributions

- Discovering new islands of tractability for both satisficing and cost-optimal planning.
- Implicit abstraction heuristics for cost-optimal planning.
- Optimal composition of abstraction heuristics.

Introduction

Contributions

Complexity Implicit Abstractions Heuristics Composition

Follow-Up

Planning is Hard!

Bad News

- planning is intractable in general (Chapman, 1987)
- even the "simple" classical planning with propositional state variables is PSPACE-complete (Bylander, 1994)

Worse News

- no difference in the theoretical complexity of satisficing and cost-optimal planning in the general case (Bylander, 1994)
- for a given domain cost-optimal planning is usually harder (Helmert, 2003)

Introduction

Contributions

Complexity Implicit Abstractions Heuristics Composition

Follow-Up

Satisficing Planning Complexity – UB

subscript/superscript *b* refers to constant bound on in-degree/out-degree

Planning Complexity - Detailed Results for $\rm UB$ ICAPS 2007, JAIR 2008

Cost-Optimal

	k = 1	k = 2	k = 3	k > 3	$k = \Theta(n)$
\mathbf{P}_b					Р
$\mathbf{P}(k)$	Р				NPC
\mathbf{S}_{b}^{b}	NPC				NPC

Satisficing

	k = 1	$k = 1 \qquad k = 2$		k > 3	$k = \Theta(n)$	
\mathbf{P}_b				—	Р	
$\mathbf{P}(k)$	Р	Р	Р		NPC	
\mathbf{S}_b^b		NPC	—	—	NPC	

k refers to k-dependence

Introduction

Contributions

Complexity Implicit Abstractions Heuristics Composition

Follow-Up

Relaxing Domain Bounds Tractable Cases of Planning with Forks, ICAPS 2008a

Theorem (forks)

Cost-optimal planning for fork problems with root $r \in V$ is poly-time if

(i)
$$|dom(r)| = 2$$
, or

(ii) for all $v \in V$, we have |dom(v)| = O(1)

Introduction

Contributions

Complexity Implicit Abstractions Heuristics Composition

Follow-Up

Summary

Theorem (inverted forks)

Cost-optimal planning for inverted fork problems with sink $r \in V$ is poly-time if |dom(r)| = O(1)

Contributions

- Discovering new islands of tractability for both satisficing and cost-optimal planning.
- Implicit abstraction heuristics for cost-optimal planning.
- Optimal composition of abstraction heuristics.

Introduction

Contributions

Implicit Abstractions Heuristics Composition

Follow-Up

Implicit Abstraction Heuristics: Basic Idea

Objective

Instead of perfectly reflecting a few state variables, reflect many (up to $\Theta(|V|)$) state variables, BUT

 guarantee abstract space can be searched (implicitly) in poly-time Introduction

Contributions

Complexity Implicit Abstractions Heuristics Composition

Follow-Up

Implicit Abstraction Heuristics: Basic Idea

Objective

Instead of perfectly reflecting a few state variables, reflect many (up to $\Theta(|V|)$) state variables, BUT

 guarantee abstract space can be searched (implicitly) in poly-time

How

Abstracting Π by an instance of a tractable fragment of cost-optimal planning

Implicit Abstractions

- acyclic causal-graph decompositions a general framework for additive implicit abstractions that is based on decomposing the task at hand along its causal graph
- fork decompositions a concrete family of additive implicit abstractions, that are based on two novel fragments of tractable cost-optimal planning
- databased implicit abstractions a proper partitioning of the heuristic computation into parts that can be shared between search states and parts that must be computed online per state

ntroduction

Complexity Implicit Abstractions Heuristics Composition

Follow-Up

Databased Implicit Abstractions vs. state-of-the-art

Introduction

Contributions

Complexity Implicit Abstractions Heuristics Composition

Follow-Up

domain	$h^{\mathcal{F}}$	$h^{\mathfrak{I}}$	h^{FJ}	$MS-10^{4}$	$MS-10^{5}$	HSP _F *	Gamer	blind	$h_{\rm max}$
IPC1-5	368	337	350	332	285	277	315	296	318

domain	$h^{\mathfrak{F}}$	$h^{\mathfrak{I}}$	h^{FI}	HSP _F *	Gamer	blind
IPC6	134	124	126	108	130	117

Contributions

- Discovering new islands of tractability for both satisficing and cost-optimal planning.
- Implicit abstraction heuristics for cost-optimal planning.
- Optimal composition of abstraction heuristics.

Introduction

Contribution Complexity Implicit

Heuristics Composition

Follow-Up

Heuristics Composition

Given: a planning problem and a set of admissible heuristics

Find: an admissible heuristic that exploits the heuristics in the set

Solution 1

heuristic that returns maximum over the heuristics in the set

Introduction

Contributions

Complexity Implicit Abstractions Heuristics Composition

Follow-Up

Heuristics Composition

Given: a planning problem and a set of admissible heuristics

Find: an admissible heuristic that exploits the heuristics in the set

Solution 1

heuristic that returns maximum over the heuristics in the set

Solution 2

heuristic that returns sum of the heuristics in the set

in special cases admissible

Introduction

Contributions

Complexity Implicit Abstractions Heuristics Composition

Follow-Up

Admissible Cases

All-in-one/nothing-in-rest

Account for the whole cost of each action in computing a single heuristic in the set, while ignoring the cost of that action in computing all the other heuristics in the set.

Exploited in Multiple Heuristics

- additive pattern database (PDB) heuristics
- constrained PDB heuristics
- *m*-reachability heuristics

Introduction

Contributions

Complexity Implicit Abstractions Heuristics Composition

Follow-Up

Action-Cost Partitioning – Basic Idea ICAPS 2008b, AIJ 2010

Action-Cost Partitioning

For each planning task's action a, if it can possibly be counted by more than one heuristic in the ensemble, then one should ensure that the cumulative counting of the cost of a does not exceed its true cost in the original task.

Introduction

Contributions

Complexity Implicit Abstractions Heuristics Composition

Follow-Up

Optimizing Action-Cost Partitioning

Pitfalls

- infinite space of choices
- © decision process should be fully unsupervised
- ③ decision process should be state-dependent

 "determining which abstractions [action-cost partitions] will produce additives that are better than max over standards is still a big research issue." (Yang et al., JAIR, 2008)

Introduction

Contributions

Complexity Implicit Abstractions Heuristics Composition

Follow-Up

Procedure:

Given: (i) a planning task II, (ii) a state s, and (iii) a set of admissible heuristics

Find: an optimal action-cost partition for s

- The procedure is fully unsupervised
- The procedure is based on a linear programming formulation of that optimization problem.
- Works for all known to us explicit and implicit abstractions.

Introduction

Contributions

Complexity Implicit Abstractions Heuristics Composition

Follow-Up

Forks IForks

Both

Introduction

Contributions

Complexity Implicit Abstractions Heuristics Composition

Follow-Up

	Eaulia	I E a ul ca	Dath	Contributio
	FORKS	TFORKS	Both	Complexity
				Implicit
				Abstraction
② Average decrease	9.55	186.62	43.98	Composition
in expanded nodes				Follow-Up
in expanded nodes				Summon

	Forks	IForks	Both	Complexity
© Average decrease in expanded nodes	9.55	186.62	43.98	Abstractions Heuristics Composition Follow-Up
·				Summary
 Average increase in evaluation time 	319.34	71.54	354.53	

	Forks	lForks	Both	
© Average decrease in expanded nodes	9.55	186.62	43.98	
 Average increase in evaluation time 	319.34	71.54	354.53	

© Computing optimal cost partitioning for initial state only improves overall performance

Introduction Contributions Complexity Implicit Abstractions Heuristics Composition Follow-Up Summary

Optimal for Initial State vs. Uniform action-cost partitions

h	F	h	a	$h^{\mathcal{F}J}$		
01	U	0 ₁	U	0 ₁	U	
22	22	22	20	21	21	
21	21	21	18	21	18	
7	7	7	4	7	7	
12	12	13	12	12	12	
5	5	4	4	5	4	
2	2	2	1	1	1	
24	22	21	16	21	16	
6	6	5	4	5	5	
53	51	53	50	53	50	
23	23	23	22	21	21	
17	17	18	15	16	16	
11	11	11	9	9	9	
7	6	7	7	7	6	
6	6	7	6	7	6	
49	46	49	40	47	46	
13	11	11	11	13	11	
378	368	371	337	367	350	
	h OI 22 21 7 12 5 2 24 6 53 23 17 11 7 6 49 13 378	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	

Introduction

Contributions

Complexity Implicit Abstractions Heuristics Composition

Follow-Up

- Enriching heuristics with landmark information (Domshlak, K, & Lefler, ICAPS 2010)
- Controlling cost partitioning (Karpas, K, & Markovitch, ICAPS 2011)
- Satisficing search with admissible heuristics (Bahumi, Domshlak, & K, HDIP 2011)

Introduction Contributions Follow-Up Summary

Summary

- New results on complexity of planning
- Formal and empirical results on abstraction-based admissible heuristics
 - from small projections to implicit abstractions
 - optimal combination of multiple abstractions

Future work:

- more tractability results for (cost-optimal) planning
- solving LPs efficiently
- optimization of abstraction selection
- optimization of variable-domains abstraction
- approximation-oriented implicit abstractions

Introduction Contributions Follow-Up Summary